Thromb Haemost 1999; 82(05): 1538-1544
DOI: 10.1055/s-0037-1614868
Rapid Communications
Schattauer GmbH

Analysis of CD39/ATP Diphosphohydrolase (ATPDase) Expression in Endothelial Cells, Platelets and Leukocytes

Katarzyna Koziak
1   From the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
,
Jean Sévigny
1   From the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
,
Simon C. Robson
1   From the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
,
Jonathan B. Siegel
1   From the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
,
Elzbieta Kaczmarek
1   From the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 07. Dezember 1998

Accepted after resubmission 28. Juni 1999

Publikationsdatum:
09. Dezember 2017 (online)

Summary

Purinergic signaling may influence hemostasis, inflammatory responses and apoptosis. Therefore, hydrolysis of extracellular ATP and ADP by the ATP diphosphohydrolase (ATPDase) could regulate these processes. We have previously demonstrated the identity between the vascular ATPDase and CD39. Here we show that levels of CD39 expression correlate with ATPDase activity in human endothelial cells (EC), platelets and selected monocyte, NK, and megakaryocyte cell lines. Western blotting revealed one to three isoforms of CD39/ ATPDase; mobility variations of major protein resulted from post-translational modifications. Northern blotting and primer extension indicated two major mRNA transcripts and one transcription start point, respectively. In addition, mRNAs specific for purinergic P2 receptors were detected in all of the investigated cells, suggesting that the co-expressed CD39/ATPDase may regulate purinergic signaling. Thrombotic and inflammatory responses may be modulated by the expression of CD39/ATPDase.

 
  • References

  • 1 Plesner L. Ecto-ATPases: identities and functions. Int Rev Cytol 1995; 158: 141-214.
  • 2 Burnstock G. Overview. Purinergic mechanisms. Ann N Y Acad Sci 1990; 603: 1-17.
  • 3 Gordon JL. The effects of ATP on endothelium. Ann N Y Acad Sci 1990; 603: 46-52.
  • 4 Ikehara S, Pahwa RN, Lunzer DC, Good RA, Modak MJ. Adenosine-5’-t riphosphate-(ATP) mediated stimulation and suppression of DNA synthesis in lymphoid cells. I. Characterization of ATP responsive cells in mouse lymphoid organs. J Immunol 1981; 127: 1834-8.
  • 5 Cockcroft S, Gomperts BD. ATP induces nucleotide permeability in rat mast cells. Nature 1979; 279: 541-2.
  • 6 Cockcroft S, Gomperts BD. Activation and inhibition of calcium-dependent histamine secretion by ATP ions applied to rat mast cells. J Physiol 1979; 296: 229-43.
  • 7 Dubyak GR, Cowan DS, Mueller LM. Activation of inositol phospholipid breakdown in HL60 cells by P2-purinergic receptors for extracellular ATP. Evidence for mediation by both pertussis toxin-sensitive and pertussis-insensitive mechanisms. J Biol Chem 1988; 263: 18108-17.
  • 8 Cockcroft S, Stutchfield J. ATP stimulates secretion in human neutrophils and HL60 cells via a pertussin toxin-sensitive guanine-nucleotide-binding protein coupled to phospholipase C. FEBS Lett 1980; 245: 25-9.
  • 9 Blanchard DK, McMillen S, Djeu JY. IFN-gamma enhances sensitivity of human macrophages to extracellular ATP-mediated lysis. J Immunol 1991; 147: 579-85.
  • 10 Henriksson T. Inhibition of natural killing by adenosine ribonucleotides. Immunol Lett 1983; 7: 17176.
  • 11 Schmidt A, Ortaldo JR, Herberman RB. Inhibition of human natural killer cell reactivity by exogenous adenosine 5’-triphosphate. J Immunol 1984; 132: 146-50.
  • 12 Blanchard DK, Wei S, Duan C, Pericle F, Diaz F, Djeu J. 1995; Role of extracellular adenosine triphosphate in the cytotoxic T-lymphocyte-mediated lysis of antigen presenting cells. Blood 19 8485 3173-82.
  • 13 Burnstock G. The past, present and future of purine nucleotides as signalling molecules. Neuropharmacol 1997; 36: 1127-39.
  • 14 Dubyak GR, el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 1993; 265: 577-606.
  • 15 Kaczmarek E, Koziak K, Sevigny J, Siegel JB, Anrather J, Beaudoin AR, Bach FH, Robson SC. Identification and characterization of CD39 vascular ATP diphosphohydrolase. J Biol Chem 1996; 271: 33116-22.
  • 16 Wang TF, Guidotti G. CD39 is an ecto-(Ca2+,Mg2+)-apyrase. J Biol Chem 1996; 271: 9898-901.
  • 17 Marcus AJ, Broekman MJ, Drosopoulos JH, Islam N, Alyonycheva TN, Safier LB, Hajjar KA, Posnett DN, Schoenborn MA, Schooley KA, Gayle RB, Maliszewski CR. The endothelial cell ecto-ATPase responsible for inhibition of platelet function is CD39. J Clin Invest 1997; 99: 1351-60.
  • 18 Kansas GS, Wood GS, Tedder TF. Expression, distribution, and biochemistry of human CD39. Role in activation-associated homotypic adhesion of lymphocytes. J Immunol 1991; 146: 2235-44.
  • 19 Beukers MW, Pirovano IM, van Weert A, Kerkhof CJ, IJzerman AP, Soudijn W. Characterization of ecto-ATPase on human blood cells. Biochem Pharmacol 1993; 46: 1959-66.
  • 20 Filippini A, Taffs RE, Agui T, Sitkovsky MV. Ecto-ATPase activity in cytolytic T-lymphocytes. Protection from the cytolytic effects of extra-cellular ATP. J Biol Chem 1990; 265: 334-40.
  • 21 Sundstrom C, Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer 1976; 17: 565-77.
  • 22 Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 1994; 8: 652-8.
  • 23 Dombrowski KE, Trevillyan JM, Cone C, Lu Y, Phillips C. Identification and partial characterization of an ectoATPase expressed by human natural killer cells. Biochemistry 1993; 32: 6515-22.
  • 24 Baykov AA, Evtushenko OA, Avaeva SM. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 1988; 171: 266-70.
  • 25 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680-5.
  • 26 Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156-9.
  • 27 Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989
  • 28 Rao AK, Kowalska MA, Disa J. Impaired cytoplasmic ionized calcium mobilization in inherited platelet secretion defects. Blood 1989; 74: 664-72.
  • 29 Racanelli A, Fareed J. Interleukin 1-stimulated prostacyclin synthesis in endothelium - lack of phospholipase-C, phospholipase-D, or protein kinase-C involvement in early signal transduction. J Lab Clin Med 1992; 120: 929-40.
  • 30 Cooper MB, Tan KC, Betteridge DJ. Platelet transmembrane signalling responses to collagen in familial hypercholesterolaemia. Eur J Clin Invest 1994; 24: 737-4.
  • 31 Yamaguchi A, Suzuki H, Tanoue K, Yamazaki H. Simple method of aequorin loading into platelets using dimethylsulphoxide. Thromb Res 1986; 44: 165-74.
  • 32 Dombrowski KE, Cone JC, Bjorndahl JM, Phillips CA. Irreversible inhibition of human natural killer cell natural cytotoxicity by modification of the extracellular membrane by the adenine nucleotide analog 5’-p-(fluorosulfonyl)benzoyl adenosine. Cellular Immunol 1995; 160: 199-204.
  • 33 Sevigny J, Cote YP, Beaudoin AR. Purification of pancreas type-I ATP diphosphohydrolase and identification by affinity labelling with the 5’-p-fluorosulphonylbenzoyladenosine ATP analogue. Bichem J 1995; 312: 351-6.
  • 34 Gayle III RB, Maliszewski CR, Gimpel SD, Schoenborn MA, Caspary RG, Richards C, Brasel K, Price V, Drosopoulos JHF, Islam N, Alyonycheva TN, Broekman MJ, Marcus AJ. Inhibition of platelet function by recombinant soluble ecto-ADPase/CD39. J Clin Invest 1997; 101: 1851-9.
  • 35 Maliszewski CR, Delespesse GJ, Schoenborn MA, Armitage RJ, Fanslow WC, Nakajima T, Baker E, Sutherland GR, Poindexter K, Birks C, Alpert A, Friend D, Gimpel SD, Gayle III RB. The CD39 lymphoid cell activation antigen. Molecular cloning and structural characterization. J Immunol 1994; 53: 3574-83.
  • 36 Robson SC, Kaczmarek E, Siegel JB, Candinas D, Koziak K, Millan M, Hancock WW, Bach FH. Loss of ATP diphosphohydrolase activity with endothelial cell activation. J Exp Med 1997; 185: 153-63.
  • 37 Schulte Am Esch II J, Sevigny J, Kaczmarek E, Siegel JB, Imai M, Koziak K, Beaudoin AR, Robson SC. Structural elements and limited proteolysis of CD39 influence ATP diphosphohydrolase activity. Biochemistry 1999; 38: 2248-58.
  • 38 Sevigny J, Levesque FP, Grondin G, Beaudoin AR. Purification of the blood vessel ATP diphosphohydrolase, identification and localization by immunological techniques. Biochim Biophys Acta 1997; 1334: 73-88.
  • 39 Marcus AJ, Safier LB, Hajjar KA, Ullman HL, Islam N, Broekman MJ, Eiroa AM. Inhibition of platelet function by an aspirin-insensitive endothelial cell ADPase. Thromboregulation by endothelial cells. J Clin Invest 1991; 88: 1690-6.
  • 40 Kansas GS, Tedder TF. Transmembrane signals generated through MHC class II, CD19, CD20, CD39, and CD40 antigens induce LFA-1-dependent and independent adhesion in human B cells through a tyrosine kinase-dependent pathway. J Immunol 1991; 147: 4094-102.
  • 41 El Moatassim C, Dubyak GR. A novel pathway for the activation of phospholipase D by P2Z purinergic receptors in BAC1.2F5 macrophages. J Biol Chem 1992; 267: 23664-73.
  • 42 Wiley JS, Chen JR, Snook MB, Jamieson GP. The P2Z-purinoceptor of human lymphocytes: actions of nucleotide agonists and irreversible inhibition by oxidized ATP. Brit J Pharmacol 1994; 112: 946-50.
  • 43 Padeh S, Cohen A, Roifman CM. ATP-induced activation of human B lymphocytes via P2-purinoceptors. J Immunol 1991; 146: 1626-32.
  • 44 Di Virgillio F, Ferrari D, Falzoni S, Chiozzi P, Munerati M, Steinberg TH, Baricordi OR. P2 purinoceptors in the immune system. Ciba Found Symp 1996; 198: 290-302.
  • 45 Leon C, Hechler B, Vial C, Leray C, Cazenave JP, Gachet C. The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Letters 1997; 403: 26-30.
  • 46 Vial C, Hechler B, Leon C, Cazenave JP, Gachet C. Presence of P2X1 receptors in human platelets and megakaryoblastic cell lines. Thromb Haemost 1997; 78: 1500-4.
  • 47 Leon C, Vial C, Cazenave JP, Gachet C. Cloning and sequencing of a human cDNA encoding endothelial P2Y(1) purinoceptor. Gene 1996; 171: 295-7.
  • 48 Jin J, Dasari VR, Sistare FD, Kunapuli SP. Distribution of P2Y receptor subtypes on haematopoietic cells. Brit J Pharmacol 1998; 123: 789-94.
  • 49 Hechler B, Leon C, Vial C, Vigne P, Frelin C, Cazenave JP, Gachet C. The P2Y1 receptor is necessary for adenosine 5’-diphosphate-induced platelet aggregation. Blood 1998; 92: 152-9.
  • 50 MacKenzie AB, Mahaut-Smith MP, Sage SO. Activation of receptor-operated cation channels via P2X1 not P2T purinoceptors in human. J Biol Chem 1996; 271: 2879-81.
  • 51 Zoeteweij JP, Van De Water B, De Bont HJGM, Nagelkerke JF. The role of a purinergic P2Z receptor in calcium-dependent cell killing of isolated rat hepatocytes by extracellular adenosine triphosphate. Hepatology 1996; 23: 858-65.
  • 52 Chow SC, Kass GEN, Orrenius S. Purines and their roles in apoptosis. Neuropharmacology 1997; 36: 1149-56.
  • 53 Baricordi OR, Ferrari D, Melchiorri L, Chiozzi P, Hanau S, Chiari E, Rubini M, Di Virgillio F. An ATP-activated channel is involved in mitogenic stimulation of human T lymphocytes. Blood 1996; 87: 682-90.
  • 54 Griffiths RJ, Stam EJ, Downs JT, Otterness IG. ATP induces release of IL-1 from LPS primed cells in vivo. J Immunol 1995; 154: 2821-8.
  • 55 Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F. Purinergic modulation of interleukin-1β release from microglial cells stimulated with bacterial endotoxin. J Exp Med 1997; 185: 579-82.
  • 56 Filippini A, Taffs RE, Sitkovsky MV. Extracellular ATP in T-lymphocyte activation: possible role in effector functions. Proc Natl Acad Sci USA 1990; 87: 8267-71.
  • 57 Ferrari D, Wesselborg S, Bauer MKA, Schultze-Osthoff K. Extracellular ATP activates transcription factor NF-κB through the P2Z purinoreceptor by selectively targeting NF-κB p65 (RelA). J Cell Biol 1997; 139: 1635-43.
  • 58 Von Albertini M, Palmetshofer A, Kaczmarek E, Koziak K, Stroka D, Grey ST, Stuhlmeier KM, Robson SC. Extracellular ATP and ADP activate transcription factor NFκB and induce endothelial cell apoptosis. Biochem Biophys Res Comm 1998; 248: 822-9.