RSS-Feed abonnieren
DOI: 10.1055/s-0037-1615067
Evaluation of the Factors Contributing to Fibrin–dependent Plasminogen Activation
The results of this study were published in abstract form and presented in part at the XIII International Congress on Fibrinolysis and Thrombolysis, Barcelona, Spain, June 24-28, 1996, and at the XIV International Fibrinogen Workshop, Canberra, Australia, August 21-23, 1996 [Fibrinolysis (1996) 10: Suppl. 4, 13]Publikationsverlauf
Received
27. August 1997
Accepted after revision
03. Dezember 1997
Publikationsdatum:
07. Dezember 2017 (online)
Summary
Polymerized fibrin strongly enhances tissue plasminogen activator (tPA)-mediated plasminogen activation, concomitant with exposure of ‘fibrin-specific’ epitopes at ‘Aα148-160’ and ‘γ312-324’. To investigate which aspects of polymerization are involved in these activities, we explored the fibrin polymerization process by evaluating the ability of factor XIIIa-crosslinked fibrinogen polymers to expose ‘fibrin-specific’ epitopes and enhance plasminogen activation. Crosslinked normal fibrinogen, fibrinogen with deficient [des Bβ1-42] or defective [Birmingham (AαR16H)] fibrin ‘D:E’ assembly sites (‘EA’), or with defective end-to-end self-association sites (‘D:D’) [Cedar Rapids (γR275C)], exposed both ‘fibrin-specific’ epitopes and enhanced tPA-dependent plasminogen activation, whereas non-crosslinked fibrinogens showed minimal or no such activities. Epitope expression in cross-linked fibrinogen was retained in the presence of the fibrin EA site peptide homolog, gly-pro-arg-pro (GPRP), which inhibits fibrin D:E association, except for the Aα148-160 epitope in des Bβ1-42 fibrinogen, which was not expressed. Fibrin prepared from crosslinked normal or abnormal fibrinogen, except for the des Bβ1-42 fibrin epitopes, which were reduced or absent, expressed ‘fibrin-specific’ epitopes even in the presence of GPRP, which otherwise impairs such expression in noncrosslinked fibrin. Epitope exposure in fibrin prepared from non-cross-linked fibrinogen was nearly normal in Cedar Rapids fibrin (heterozygous D:D defect), but reduced in Birmingham fibrin (heterozygous EA defect), nil in des Bβ1-42 fibrin (EA deficient), and absent in all cases in the presence of GPRP. In contrast, plasminogen activation stimula-tory activity that had been exposed in crosslinked normal fibrinogen or in crosslinked des Bβ1-42 or Cedar Rapids fibrin, was preserved to a large extent in the presence of GPRP, suggesting that once enhanced stimulatory activity and epitopes are exposed, they are not completely reversible. The findings indicate that end-to-end intermolecular associations (D:D) are not critical for ‘fibrin-specific’ epitope exposure, but that polymerization brought about in fibrinogen through factor XIIIa crosslinking, or in fibrin through ‘D:E’ interactions, is necessary for ‘fibrin-specific’ (more correctly, ‘polymerization-specific’) epitope exposure and enhancement of plasminogen activation.
-
References
- 1 Kudryk B, Reuterby J, Blombäck B. Adsorption of plasmic fragment D to thrombin modified fibrinogen-sepharose. Thromb Res 1973; 2: 297-304.
- 2 Blombäck B, Hessel B, Hogg D, Therkildsen LA. A two-step fibrinogenfibrin transition in blood coagulation. Nature 1978; 275: 501-5.
- 3 Budzynski AZ, Olexa SA, Pandya BV. Fibrin polymerization sites in fibrinogen and fibrin fragments. Ann NY Acad Sci 1983; 408: 301-14.
- 4 Siebenlist KR, DiOrio JP, Budzynski AZ, Mosesson MW. The polymerization and thrombin-binding properties of des-(Bβ1-42)-fibrin. J Biol Chem 1990; 265: 18650-5.
- 5 Pandya BV, Cierniewski CS, O’Brien JO, Budzynski AZ. Polymerization site in the β chain of fibrin: mapping of the Bβ1-55 sequence. Biochemistry 1991; 30: 162-8.
- 6 Mosesson MW, Siebenlist KR, Hainfeld JF, Wall JS. The covalent structure of factor XIIIa-crosslinked fibrinogen fibrils. J Struct Biol 1995; 115: 88-101.
- 7 Mosesson MW, Siebenlist KR, DiOrio JP, Matsuda M, Hainfeld JF, Wall JS. The role of fibrinogen D domain intermolecular association sites in the polymerization of fibrin and fibrinogen Tokyo II (γ275 Arg→Cys). J Clin Invest 1996; 96: 1053-8.
- 8 Wallén P. Activation of plasminogen with urokinase and tissue activator. In: Thrombosis and Urokinase. Paoletti R, Sherry S. eds. Academic Press; London, England: 1977. vol. 9 91-102.
- 9 Allen RA, Pepper DS. Isolation and properties of human vascular plasminogen activator. Thromb Haemost 1981; 45: 43-50.
- 10 Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator: role of fibrin. J Biol Chem 1982; 257: 2912-9.
- 11 Rånby M. Studies of the kinetics of plasminogen activation by tissue plasminogen activator. Biochim Biophys Acta 1982; 704: 461-9.
- 12 Laudano AP. Doolittle. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Proc Natl Acad Sci (USA) 1978; 75: 3085-9.
- 13 Suenson E, Petersen LC. Fibrin and plasminogen structures essential to stimulation of plasmin formation by tissue-type plasminogen activator. Biochim Biophys Acta 1986; 870: 510-9.
- 14 Suenson E, Bjerrum P, Holm A, Lind B, Meldal M, Selmer J, Petersen LC. The role of fragment X polymers in the fibrin enhancement of tissue plasminogen activator-catalyzed plasmin formation. J Biol Chem 1990; 265: 22228-37.
- 15 Haddeland U, Bennick A, Brosstad F. Stimulating effect on tissue-type plasminogen activation – a new and sensitive indicator of denatured fibrinogen. Thromb Res 1995; 77: 329-36.
- 16 Haddeland U, Sletten K, Bennick A, Nieuwenhuizen W, Brosstad F. Aggregated conformationally changed fibrinogen exposes the stimulatory sites for t-PA catalysed plasminogen activation. Thromb Haemostas 1996; 75: 326-31.
- 17 Nieuwenhuizen W, Vermond A, Voskuilen M, Traas DW, Verheijen JH. Identification of a site in fibrin(ogen) which is involved in the acceleration of plasminogen activation by tissue-type plasminogen activator. Biochim Biophys Acta 1983; 748: 86-92.
- 18 Schielen WJG, Adams HPHM, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence Aα-(154-159) of fibrinogen is capable of accelerating the tPA catalyzed activation of plasminogen. Blood Coag Fibrinol 1991; 2: 465-70.
- 19 Schielen WJG, Adams HPMH, Voskuilen M, Tesser GI, Nieuwenhuizen W. Structural requirements of position Aα-157 in fibrinogen for the fibrin-induced rate enhancement of the plasminogen activation by tPA. Biochem J 1991; 276: 655-9.
- 20 Yonekawa O, Voskuilen M, Nieuwenhuizen W. Localization in the fibrinogen γ-chain of a new site that is involved in the acceleration of the tissue-type plasminogen activator-catalysed activation of plasminogen. Biochem J 1992; 283: 187-91.
- 21 Schielen WJG, Adams HPMH, Voskuilen M, Tesser GI, Nieuwenhuizen W. The role of 152Val of fibrinogen Aα-chain in the fibrin-induced rate enhancement of the plasminogen activation by tPA. Fibrinolysis 1993; 7: 63-7.
- 22 Nieuwenhuizen W. Sites in fibrin involved in the acceleration of plasminogen activation by tPA. Possible role of fibrin polymerization. Thromb Res 1994; 75: 343-7.
- 23 Schielen WJG, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence Aα-(148-160) in fibrin, but not in fibrinogen, is accessible to monoclonal antibodies. 1989. Proc Natl Acad Sci (USA) 1989; 86: 8951-4.
- 24 Schielen WJG, Adams HPMH, van Leuven VK, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence γ-(312-324) is a fibrin-specific epitope. Blood 1991; 77: 2169-73.
- 25 Voskuilen M, Vermond A, Veeneman GH, van Boom JH, Klasen EA, Zegers ND, Nieuwenhuizen W. Fibrinogen lysine residue Aα157 plays a crucial role in the fibrin-induced acceleration of plasminogen activation catalyzed by tissue-type plasminogen activator. J Biol Chem 1987; 262: 5944-6.
- 26 Nieuwenhuizen W, Verheijen JH, Vermond A, Chang GTG. Plasminogen activation by tissue activator is accelerated in the presence of fibrin(ogen) cyanogen bromide fragment FCB-2. Biochim Biophys Acta 1983; 755: 531-3.
- 27 Grailhe P, Nieuwenhuizen W, Anglés-Cano E. Study of tissue-type plasminogen activator binding sites on fibrin using distinct fragments of fibrinogen. Eur J Biochem 1994; 219: 961-7.
- 28 Verheijen JH, Nieuwenhuizen W, Wijngaards G. Activation of plasminogen by tissue activator is increased specifically in the presence of certain soluble fibrin(ogen) fragments. Thromb Res 1982; 27: 377-85.
- 29 Siebenlist KR, Prchal JT, Mosesson MW. Fibrinogen Birmingham: a heterozygous dysfibrinogenemia (Aα16 Arg→His) containing heterodimeric molecules. Blood 1988; 71: 613-8.
- 30 DiOrio JP, Mosesson MW, Siebenlist KR, Olson JD, Hainfeld JF, Wall JS. The basis for fibrinogen Cedar Rapids (γ R275C) fibrin network structure. Microscopy Microanalysis 1996; 1: 928-9.
- 31 Mosesson MW, Sherry S. Preparation and properties of human fibrinogen of relatively high solubility. Biochemistry 1966; 5: 2829-35.
- 32 Pandya BV, Budzynski AZ. Anticoagulant proteases from western diamondback rattlesnake (Crotalus atrox) venom. Biochemistry 1984; 23: 460-70.
- 33 Kawasaki ES. Sample preparation from blood, cells, and other fluids. In: PCR protocols: A guide to methods and applications. Innis MA, Gelfand DH, Sninsky JJ, White TJ. eds. Academic Press; New York, NY,: 1990. pp 146-52.
- 34 Saiki RK, Geleand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239: 487-91.
- 35 Lorand L, Gotoh T. 1970. Fibrinoligase. The fibrin stabilizing factor system. Methods Enzymol 1970; 19: 770-82.
- 36 Loewy AG, Dunathan K, Kriel R, Wolfinger Jr. HL, Fibrinase I. Purification of substrate and enzyme. J Biol Chem 1961; 236: 2625-33.
- 37 Hoegee-De Nobel E, Voskuilen M, Briët E, Brommer EJP, Nieuwenhuizen W. Monoclonal antibody-based quantitative enzyme immunoassay for the determination of plasma fibrinogen concentrations. Thromb Haemost 1988; 60: 415-8.
- 38 Nieuwenhuizen W, Hoegee-De Nobel E, Laterveer RA. A rapid monoclonal antibody-based enzyme immunoassay (EIA) for the quantitative determination of soluble fibrin in plasma. Thromb Haemost 1992; 68: 273-7.
- 39 Pirkle H, Stocker K. Thrombin-like enzymes from snake venoms: an inventory. Thromb Haemost 1991; 65: 444-50.
- 40 Koopman J, Haverkate F, Koppert PW, Nieuwenhuizen W, Brommer EJP, Van der Werf WGC. New immunoassay of fibrin-fibrinogen degradation products in plasma using a monoclonal antibody. J Lab Clin Med 1987; 109: 75-84.
- 41 Koppert PW, Huijsmans CMG, Nieuwenhuizen W. A monoclonal antibody, specific for human fibrinogen, fibrinopeptide A-containing fragments, and not reacting with free fibrinopeptide A. Blood 1985; 66: 503-7.
- 42 Meh DA, Siebenlist KR, Galanakis DK, Bergtrom G, Mosesson MW. The dimeric Aα chain composition of dysfibrinogenemic molecules with mutations at Aα16. Thromb Res 1995; 78: 531-9.