Thromb Haemost 1998; 79(04): 796-801
DOI: 10.1055/s-0037-1615067
Rapid Communication
Schattauer GmbH

Evaluation of the Factors Contributing to Fibrin–dependent Plasminogen Activation

Michael W. Mosesson
1   From the Sinai Samaritan Medical Center, University of Wisconsin Medical School-Milwaukee Clinical Campus, Milwaukee, USA
,
Kevin R. Siebenlist
1   From the Sinai Samaritan Medical Center, University of Wisconsin Medical School-Milwaukee Clinical Campus, Milwaukee, USA
,
Marijke Voskuilen
2   From the Gaubius Laboratory TNO–PG, Leiden, The Netherlands
,
Willem Nieuwenhuizen
2   From the Gaubius Laboratory TNO–PG, Leiden, The Netherlands
› Institutsangaben
The results of this study were published in abstract form and presented in part at the XIII International Congress on Fibrinolysis and Thrombolysis, Barcelona, Spain, June 24-28, 1996, and at the XIV International Fibrinogen Workshop, Canberra, Australia, August 21-23, 1996 [Fibrinolysis (1996) 10: Suppl. 4, 13]
Weitere Informationen

Publikationsverlauf

Received 27. August 1997

Accepted after revision 03. Dezember 1997

Publikationsdatum:
07. Dezember 2017 (online)

Summary

Polymerized fibrin strongly enhances tissue plasminogen activator (tPA)-mediated plasminogen activation, concomitant with exposure of ‘fibrin-specific’ epitopes at ‘Aα148-160’ and ‘γ312-324’. To investigate which aspects of polymerization are involved in these activities, we explored the fibrin polymerization process by evaluating the ability of factor XIIIa-crosslinked fibrinogen polymers to expose ‘fibrin-specific’ epitopes and enhance plasminogen activation. Crosslinked normal fibrinogen, fibrinogen with deficient [des Bβ1-42] or defective [Birmingham (AαR16H)] fibrin ‘D:E’ assembly sites (‘EA’), or with defective end-to-end self-association sites (‘D:D’) [Cedar Rapids (γR275C)], exposed both ‘fibrin-specific’ epitopes and enhanced tPA-dependent plasminogen activation, whereas non-crosslinked fibrinogens showed minimal or no such activities. Epitope expression in cross-linked fibrinogen was retained in the presence of the fibrin EA site peptide homolog, gly-pro-arg-pro (GPRP), which inhibits fibrin D:E association, except for the Aα148-160 epitope in des Bβ1-42 fibrinogen, which was not expressed. Fibrin prepared from crosslinked normal or abnormal fibrinogen, except for the des Bβ1-42 fibrin epitopes, which were reduced or absent, expressed ‘fibrin-specific’ epitopes even in the presence of GPRP, which otherwise impairs such expression in noncrosslinked fibrin. Epitope exposure in fibrin prepared from non-cross-linked fibrinogen was nearly normal in Cedar Rapids fibrin (heterozygous D:D defect), but reduced in Birmingham fibrin (heterozygous EA defect), nil in des Bβ1-42 fibrin (EA deficient), and absent in all cases in the presence of GPRP. In contrast, plasminogen activation stimula-tory activity that had been exposed in crosslinked normal fibrinogen or in crosslinked des Bβ1-42 or Cedar Rapids fibrin, was preserved to a large extent in the presence of GPRP, suggesting that once enhanced stimulatory activity and epitopes are exposed, they are not completely reversible. The findings indicate that end-to-end intermolecular associations (D:D) are not critical for ‘fibrin-specific’ epitope exposure, but that polymerization brought about in fibrinogen through factor XIIIa crosslinking, or in fibrin through ‘D:E’ interactions, is necessary for ‘fibrin-specific’ (more correctly, ‘polymerization-specific’) epitope exposure and enhancement of plasminogen activation.

 
  • References

  • 1 Kudryk B, Reuterby J, Blombäck B. Adsorption of plasmic fragment D to thrombin modified fibrinogen-sepharose. Thromb Res 1973; 2: 297-304.
  • 2 Blombäck B, Hessel B, Hogg D, Therkildsen LA. A two-step fibrinogenfibrin transition in blood coagulation. Nature 1978; 275: 501-5.
  • 3 Budzynski AZ, Olexa SA, Pandya BV. Fibrin polymerization sites in fibrinogen and fibrin fragments. Ann NY Acad Sci 1983; 408: 301-14.
  • 4 Siebenlist KR, DiOrio JP, Budzynski AZ, Mosesson MW. The polymerization and thrombin-binding properties of des-(Bβ1-42)-fibrin. J Biol Chem 1990; 265: 18650-5.
  • 5 Pandya BV, Cierniewski CS, O’Brien JO, Budzynski AZ. Polymerization site in the β chain of fibrin: mapping of the Bβ1-55 sequence. Biochemistry 1991; 30: 162-8.
  • 6 Mosesson MW, Siebenlist KR, Hainfeld JF, Wall JS. The covalent structure of factor XIIIa-crosslinked fibrinogen fibrils. J Struct Biol 1995; 115: 88-101.
  • 7 Mosesson MW, Siebenlist KR, DiOrio JP, Matsuda M, Hainfeld JF, Wall JS. The role of fibrinogen D domain intermolecular association sites in the polymerization of fibrin and fibrinogen Tokyo II (γ275 Arg→Cys). J Clin Invest 1996; 96: 1053-8.
  • 8 Wallén P. Activation of plasminogen with urokinase and tissue activator. In: Thrombosis and Urokinase. Paoletti R, Sherry S. eds. Academic Press; London, England: 1977. vol. 9 91-102.
  • 9 Allen RA, Pepper DS. Isolation and properties of human vascular plasminogen activator. Thromb Haemost 1981; 45: 43-50.
  • 10 Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator: role of fibrin. J Biol Chem 1982; 257: 2912-9.
  • 11 Rånby M. Studies of the kinetics of plasminogen activation by tissue plasminogen activator. Biochim Biophys Acta 1982; 704: 461-9.
  • 12 Laudano AP. Doolittle. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Proc Natl Acad Sci (USA) 1978; 75: 3085-9.
  • 13 Suenson E, Petersen LC. Fibrin and plasminogen structures essential to stimulation of plasmin formation by tissue-type plasminogen activator. Biochim Biophys Acta 1986; 870: 510-9.
  • 14 Suenson E, Bjerrum P, Holm A, Lind B, Meldal M, Selmer J, Petersen LC. The role of fragment X polymers in the fibrin enhancement of tissue plasminogen activator-catalyzed plasmin formation. J Biol Chem 1990; 265: 22228-37.
  • 15 Haddeland U, Bennick A, Brosstad F. Stimulating effect on tissue-type plasminogen activation – a new and sensitive indicator of denatured fibrinogen. Thromb Res 1995; 77: 329-36.
  • 16 Haddeland U, Sletten K, Bennick A, Nieuwenhuizen W, Brosstad F. Aggregated conformationally changed fibrinogen exposes the stimulatory sites for t-PA catalysed plasminogen activation. Thromb Haemostas 1996; 75: 326-31.
  • 17 Nieuwenhuizen W, Vermond A, Voskuilen M, Traas DW, Verheijen JH. Identification of a site in fibrin(ogen) which is involved in the acceleration of plasminogen activation by tissue-type plasminogen activator. Biochim Biophys Acta 1983; 748: 86-92.
  • 18 Schielen WJG, Adams HPHM, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence Aα-(154-159) of fibrinogen is capable of accelerating the tPA catalyzed activation of plasminogen. Blood Coag Fibrinol 1991; 2: 465-70.
  • 19 Schielen WJG, Adams HPMH, Voskuilen M, Tesser GI, Nieuwenhuizen W. Structural requirements of position Aα-157 in fibrinogen for the fibrin-induced rate enhancement of the plasminogen activation by tPA. Biochem J 1991; 276: 655-9.
  • 20 Yonekawa O, Voskuilen M, Nieuwenhuizen W. Localization in the fibrinogen γ-chain of a new site that is involved in the acceleration of the tissue-type plasminogen activator-catalysed activation of plasminogen. Biochem J 1992; 283: 187-91.
  • 21 Schielen WJG, Adams HPMH, Voskuilen M, Tesser GI, Nieuwenhuizen W. The role of 152Val of fibrinogen Aα-chain in the fibrin-induced rate enhancement of the plasminogen activation by tPA. Fibrinolysis 1993; 7: 63-7.
  • 22 Nieuwenhuizen W. Sites in fibrin involved in the acceleration of plasminogen activation by tPA. Possible role of fibrin polymerization. Thromb Res 1994; 75: 343-7.
  • 23 Schielen WJG, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence Aα-(148-160) in fibrin, but not in fibrinogen, is accessible to monoclonal antibodies. 1989. Proc Natl Acad Sci (USA) 1989; 86: 8951-4.
  • 24 Schielen WJG, Adams HPMH, van Leuven VK, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence γ-(312-324) is a fibrin-specific epitope. Blood 1991; 77: 2169-73.
  • 25 Voskuilen M, Vermond A, Veeneman GH, van Boom JH, Klasen EA, Zegers ND, Nieuwenhuizen W. Fibrinogen lysine residue Aα157 plays a crucial role in the fibrin-induced acceleration of plasminogen activation catalyzed by tissue-type plasminogen activator. J Biol Chem 1987; 262: 5944-6.
  • 26 Nieuwenhuizen W, Verheijen JH, Vermond A, Chang GTG. Plasminogen activation by tissue activator is accelerated in the presence of fibrin(ogen) cyanogen bromide fragment FCB-2. Biochim Biophys Acta 1983; 755: 531-3.
  • 27 Grailhe P, Nieuwenhuizen W, Anglés-Cano E. Study of tissue-type plasminogen activator binding sites on fibrin using distinct fragments of fibrinogen. Eur J Biochem 1994; 219: 961-7.
  • 28 Verheijen JH, Nieuwenhuizen W, Wijngaards G. Activation of plasminogen by tissue activator is increased specifically in the presence of certain soluble fibrin(ogen) fragments. Thromb Res 1982; 27: 377-85.
  • 29 Siebenlist KR, Prchal JT, Mosesson MW. Fibrinogen Birmingham: a heterozygous dysfibrinogenemia (Aα16 Arg→His) containing heterodimeric molecules. Blood 1988; 71: 613-8.
  • 30 DiOrio JP, Mosesson MW, Siebenlist KR, Olson JD, Hainfeld JF, Wall JS. The basis for fibrinogen Cedar Rapids (γ R275C) fibrin network structure. Microscopy Microanalysis 1996; 1: 928-9.
  • 31 Mosesson MW, Sherry S. Preparation and properties of human fibrinogen of relatively high solubility. Biochemistry 1966; 5: 2829-35.
  • 32 Pandya BV, Budzynski AZ. Anticoagulant proteases from western diamondback rattlesnake (Crotalus atrox) venom. Biochemistry 1984; 23: 460-70.
  • 33 Kawasaki ES. Sample preparation from blood, cells, and other fluids. In: PCR protocols: A guide to methods and applications. Innis MA, Gelfand DH, Sninsky JJ, White TJ. eds. Academic Press; New York, NY,: 1990. pp 146-52.
  • 34 Saiki RK, Geleand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239: 487-91.
  • 35 Lorand L, Gotoh T. 1970. Fibrinoligase. The fibrin stabilizing factor system. Methods Enzymol 1970; 19: 770-82.
  • 36 Loewy AG, Dunathan K, Kriel R, Wolfinger Jr. HL, Fibrinase I. Purification of substrate and enzyme. J Biol Chem 1961; 236: 2625-33.
  • 37 Hoegee-De Nobel E, Voskuilen M, Briët E, Brommer EJP, Nieuwenhuizen W. Monoclonal antibody-based quantitative enzyme immunoassay for the determination of plasma fibrinogen concentrations. Thromb Haemost 1988; 60: 415-8.
  • 38 Nieuwenhuizen W, Hoegee-De Nobel E, Laterveer RA. A rapid monoclonal antibody-based enzyme immunoassay (EIA) for the quantitative determination of soluble fibrin in plasma. Thromb Haemost 1992; 68: 273-7.
  • 39 Pirkle H, Stocker K. Thrombin-like enzymes from snake venoms: an inventory. Thromb Haemost 1991; 65: 444-50.
  • 40 Koopman J, Haverkate F, Koppert PW, Nieuwenhuizen W, Brommer EJP, Van der Werf WGC. New immunoassay of fibrin-fibrinogen degradation products in plasma using a monoclonal antibody. J Lab Clin Med 1987; 109: 75-84.
  • 41 Koppert PW, Huijsmans CMG, Nieuwenhuizen W. A monoclonal antibody, specific for human fibrinogen, fibrinopeptide A-containing fragments, and not reacting with free fibrinopeptide A. Blood 1985; 66: 503-7.
  • 42 Meh DA, Siebenlist KR, Galanakis DK, Bergtrom G, Mosesson MW. The dimeric Aα chain composition of dysfibrinogenemic molecules with mutations at Aα16. Thromb Res 1995; 78: 531-9.