Thromb Haemost 1998; 80(01): 42-48
DOI: 10.1055/s-0037-1615136
Rapid Communication
Schattauer GmbH

A Ser162→ Leu Mutation within Glycoprotein (GP) IIIa (Integrin β3) Results in an Unstable αIIbβ3 Complex that Retains Partial Function in a Novel Form of Type II Glanzmann Thrombasthenia

Denise E. Jackson
1   Blood Research Institute, The Blood Center of Southeastern Wisconsin, Milwaukee, WI
,
Melanie M. White
2   Departments of Medicine and Biochemistry, The University of Tennessee Memphis, Memphis, TN
,
Lisa K. Jennings
2   Departments of Medicine and Biochemistry, The University of Tennessee Memphis, Memphis, TN
,
Peter J. Newman
1   Blood Research Institute, The Blood Center of Southeastern Wisconsin, Milwaukee, WI
3   Departments of Cellular Biology and Pharmacology, Medical College of Wisconsin, Milwaukee, WI, USA
› Author Affiliations
This work was presented in abstract form at the American Society of Hematology Meeting on December 9th, 1996 in Orlando, Florida. This investigation was supported by grants HL-44612 (PJN) and HL-53514 (LKJ) from the National Institutes of Health. Denise E. Jackson is a recipient of an American Heart Association (Wisconsin Affiliate) Postdoctoral Fellowship Award (96F-Post-34). Drs. Newman and Jennings held Established Investigator Awards from the American Heart Association during the course of this investigation.
Further Information

Publication History

Received 03 July 1997

Accepted after revision 28 March 1998

Publication Date:
08 December 2017 (online)

Summary

Platelets from Glanzmann thrombasthenia patient BL express approximately 30% of the normal αIIbβ3 content and support fibrin-mediated clot retraction, but fail to bind fibrinogen or aggregate following cellular activation. BL platelets bind neither activation-dependent nor activation-independent ligands. DNA sequence analysis of BL platelet mRNA revealed a homozygous C583→T point mutation in a conserved region of β3, resulting in a Ser162Leu amino acid substitution. This mutation appears to produce destabilizing effects on the αIIbβ3 complex, as evidenced by the fact that (1) the BL αIIbβ3 complex exhibited altered sedimentation velocity through sucrose gradients, (2) αIIb and β3 was not recognized by complex-dependent monoclonal antibodies or co-precipitated by integrin subunit-specific antibodies, and (3) biosynthesis and trafficking of the αIIbβ3Leu162 complex was delayed relative to that of the wild-type control. Taken together, these data implicate the region encompassing Ser162 in the stabilization and ligand binding properties of the αIIbβ3 complex.

 
  • References

  • 1 D’Souza SE, Haas TA, Piotrowicz R S, Byers-Ward V, McGrath DE, Soule HR, Cierniewski C, Plow EF, Smith JW. Ligand and cation binding are dual functions of a discrete segment of the integrin β3 subunit: Cation displacement is involved in ligand binding.. Cell 1994; 79: 659-67.
  • 2 D’Souza SE, Ginsberg MH, Matsueda GR, Plow EF. A discrete sequence in a platelet integrin is involved in ligand recognition.. Nature 1991; 350: 66-8.
  • 3 Taylor DB, Gartner TK. A peptide corresponding to GPIIb 300-312, a presumptive fibrinogen γ-chain binding site on the platelet integrin GPIIb/IIIa, inhibits the adhesion of platelets to at least four adhesive ligands.. J Biol Chem 1992; 267: 11729-33.
  • 4 Charo IF, Nannizzi L, Phillips DR, Hsu MA, Scarborough RM. Inhibition of fibrinogen binding to GPIIb-IIIa by a GPIIIa peptide.. J Biol Chem 1991; 266: 1415-21.
  • 5 Lasz EC, McLane MA, Trybulec M, Kowalska MA, Khan S, Budzynski AZ, Niewiarowski S. β3 integrin derived peptide 217-230 inhibits fibrinogen binding and platelet aggregation: significance of RGD sequences and fibrinogen A-chain.. Biochem Biophys Res Commun 1993; 190: 118-24.
  • 6 Steiner B, Trzeciak A, Pfenninger G, Kouns WC. Peptides derived from a sequence within β3 integrin bind to platelet αIIbβ3 (GPIIb-IIIa) and inhibit ligand binding.. J Biol Chem 1993; 268: 6870-73.
  • 7 McKay BS, Annis DA, Honda S, Christie D, Kunicki TJ. Molecular requirements for assembly and function of a minimized human integrin αIIbβ3.. J Biol Chem 1996; 271: 30544-7.
  • 8 Jennings LK, Phillips DR. Purification of glycoproteins IIb and III from human platelet plasma membranes and characterization of a calcium-dependent glycoprotein IIb-III complex.. J Biol Chem 1982; 257: 10458-66.
  • 9 Kunicki T J, Pidard D, Rosa J-P, Nurden AT. The formation of Ca++-depen-dent complexes of platelet membrane glycoproteins IIb and IIIa in solution as determined by crossed immunoelectrophoresis.. Blood 1981; 58: 268-78.
  • 10 Bennett JS, Hoxie JA, Leitman SF, Vilaire G, Cines DB. Inhibition of fibrinogen binding to stimulated human platelets by a mAb.. Proc Natl Acad Sci USA 1983; 80: 2417-21.
  • 11 Bennett JS, Vilaire G, Cines DB. Identification of the fibrinogen receptor on human platelets by photoaffinity labeling.. J Biol Chem 1982; 257: 8049-54.
  • 12 Bray PF, Rosa J-P, Lingappa VR, Kan YW, McEver RP, Shuman MA. Biogenesis of the platelet receptor for fibrinogen: evidence for separate precursors for glycoproteins IIb and IIIa.. Proc Natl Acad Sci USA 1986; 83: 1480-4.
  • 13 Duperray A, Troesch A, Berthier R, Chagnon E, Frachet P, Uzan G, Marguerie G. Biosynthesis and assembly of platelet GPIIb-IIIa in human megakaryocytes: Evidence that assembly between pro-GPIIb and GPIIIa is a prerequisite for expression of the complex on the cell surface.. Blood 1989; 74: 1603-11.
  • 14 Duperray A, Berthier R, Chagnon E, Ryckewaert JJ, Ginsberg MH, Plow EF, Marguerie G. Biosynthesis and processing of platelet GPIIb-IIIa in human megakaryocytes.. J Cell Biol 1987; 104: 1665-73.
  • 15 O’Toole TE, Loftus JC, Plow EF, Glass AA, Harper JR, Ginsberg MH. Efficient surface expression of platelet GPIIb-IIIa requires both subunits.. Blood 1989; 74: 14-8.
  • 16 Rosa J-P, McEver RP. Processing and assembly of the integrin, glyco-protein IIb-IIIa in HEL cells.. J Biol Chem 1989; 264: 12596-603.
  • 17 Glanzmann E. Hereditäre hämorrhagische Thrombasthenie: ein Beitrag zur Pathologie der Blutplättchen.. J Kinderkr 1918; 88: 113-41.
  • 18 George JN, Caen JP, Nurden AT. Glanzmann’s thrombasthenia: the spectrum of clinical disease.. Blood 1990; 75: 1383-95.
  • 19 Bennett JS, Vilaire G. Exposure of platelet fibrinogen receptors by ADP and epinephrine.. J Clin Invest 1979; 64: 1393-401.
  • 20 Caen JP. Glanzmann’s thrombasthenia.. Clin Haematol 1972; 1: 383-92.
  • 21 Burk CD, Newman PJ, Lyman S, Gill J, Coller BS, Poncz M. A deletion in the gene for glycoprotein IIb associated with Glanzmann’s thrombasthenia.. J Clin Invest 1991; 87: 270-6.
  • 22 Li L, Bray PF. Homologous recombination among three intragene Alu sequences causes an inversion-deletion resulting in the hereditary bleeding disorder Glanzmann thrombasthenia.. Am J Hum Genet 1995; 85: 140-9.
  • 23 Peretz H, Rosenberg N, Usher S, Graff E, Newman PJ, Coller BS, Seligsohn U. Glanzmann’s thrombasthenia associated with deletion-insertion and alternative splicing in the glycoprotein IIb gene.. Blood 1994; 85: 414-20.
  • 24 Iwamoto S, Nishiumi E, Kajii E, Ikemoto S. An exon 28 mutation resulting in alternative splicing of the glycoprotein IIb transcript and Glanzmann’s thrombasthenia.. Blood 1994; 83: 1017-23.
  • 25 Newman PJ, Seligsohn U, Lyman S, Coller BS. The molecular genetic basis of Glanzmann thrombasthenia in the Iraqi-Jewish and Arab population in Israel.. Proc Natl Acad Sci USA 1991; 88: 3160-4.
  • 26 Loftus JC, O’Toole TE, Plow EF, Glass A, Frelinger III AL, Ginsberg MH. A β3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation.. Science 1990; 249: 915-8.
  • 27 Bajt ML, Ginsberg MH, Frelinger AL III, Berndt MC, Loftus JC. A spontaneous mutation of integrin αIIbβ3 (platelet glycoprotein IIb-IIIa) helps define a ligand binding site.. J Biol Chem 1992; 267: 3789-94.
  • 28 Lanza F, Stierle A, Fournier D, Morales M, Andre G, Nurden AT, Cazenave J-P. A new variant of Glanzmann’s thrombasthenia (Strasbourg I). Platelets with functionally defective glycoprotein IIb-IIIa complexes and a glycoprotein IIIa 214Arg→214Trp mutation.. J Clin Invest 1992; 89: 1995-2004.
  • 29 Poncz M, Rifat S, Coller BS, Newman PJ, Shattil SJ, Parrella T, Fortina P, Bennett JS. Glanzmann thrombasthenia secondary to a Gly273 → Asp mutation adjacent to the first calcium-binding domain of platelet glyco-protein IIb.. J Clin Invest 1994; 93: 172-9.
  • 30 Chen Y-P, Djaffar I, Pidard D, Steiner B, Cieutat A-M, Caen JP, Rosa J-P. Ser752 → Pro mutation in the cytoplasmic domain of integrin β3 subunit and defective activation of the platelet integrin αIIbβ3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia.. Proc Natl Acad Sci USA 1992; 89: 10169-73.
  • 31 Wilcox DA, Wautier JL, Pidard D, Newman PJ. A single amino acid substitution flanking the fourth calcium binding domain of αIIb prevents maturation of the αIIbβ3 integrin complex.. J Biol Chem 1994; 269: 4450-7.
  • 32 Wilcox DA, Paddock CM, Lyman S, Gill JC, Newman PJ. Glanzmann thrombasthenia resulting from a single amino acid substitution between the second and third calcium-binding domains of GPIIb. Role of the GPIIb amino terminus in integrin subunit association.. J Clin Invest 1995; 95: 1553-60.
  • 33 Wang RG, Ambruso DR, Newman PJ. Truncation in the cytoplasmic domain of integrin beta-3 subunit confers an inactivated state to the alpha-IIb-beta-3 complex in a variant type of Glanzmann thrombasthenia.. Blood 1994; 84: 244a.
  • 34 Lee J-O, Rieu P, Arnaout MA, Liddington R. Crystal structure of the A domain from the α subunit of integrin CR3 (CD11b/CD18).. Cell 1995; 80: 631-8.
  • 35 Nurden AT, Rosa J-P, Fournier D, Legrand C, Didry C, Parquet A, Pidard A. A variant of Glanzmann’s thrombasthenia with abnormal glycoprotein IIb-IIIa complexes in the platelet membrane.. J Clin Invest 1987; 79: 962-9.
  • 36 Fournier DJ, Kabral A, Castaldi PA, Berndt MC. A variant of Glanzmann’s thrombasthenia characterized by abnormal glycoprotein IIb/IIIa complex formation.. Thromb Haemost 1989; 62 (03) 977-83.
  • 37 Newman PJ, Weyerbusch-Bottum S, Visentin GP, Gidwitz S, White II GC. Type II Glanzmann thrombasthenia due to a destabilizing amino acid substitution in platelet membrane glycoprotein IIIa.. Thromb Haemost 1993; 69 (06) 1691a.
  • 38 Jennings LK, Wang WC, Jackson CW, Fox CF, Bell A. Hemostasis in Glanzmann’s thrombasthenia (GT): GT platelets interfere with the aggregation of normal platelets.. Amer J Pediatr Hematol 1991; 13 (01) 84-90.
  • 39 Kouns WC, Wall CD, White MM, Fox CF, Jennings LK. A conformation-dependent epitope of human platelet glycoprotein IIIa.. J Biol Chem 1990; 265: 20594-601.
  • 40 Jennings LK, White MM, Mandrell TD. Interspecies comparison of platelet aggregation, LIBS expression and clot retraction: observed differences in GPIIb-IIIa functional activity.. Thromb Haemost 1995; 74 (06) 1551-6.
  • 41 McEver RP, Bennett EM, Martin MN. Identification of two structurally and functionally distinct sites on human platelet membrane glycoprotein IIb-IIIa using monoclonal antibodies.. J Biol Chem 1983; 258: 5269-75.
  • 42 Coller BS, Peerschke EI, Seligsohn U, Scudder LE, Nurden AT, Rosa JP. Studies on the binding of an alloimmune and two murine monoclonal antibodies to the platelet glycoprotein IIb-IIIa complex receptor.. J Lab Clin Med 1986; 107: 384-93.
  • 43 Coller BS. A new murine monoclonal antibody reports an activation-dependent change in the conformation and/or microenvironment of platelet GPIIb-IIIa complex.. J Clin Invest 1985; 76: 101-8.
  • 44 Weisel JW, Nagaswami C, Vilaire G, Bennett JS. Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy.. J Biol Chem 1992; 267: 16637-43.
  • 45 Pidard D, Montgomery RR, Bennett JS, Kunicki TJ. Interaction of AP-2, a monoclonal antibody specific for the human platelet glycoprotein IIb-IIIa complex, with intact platelets.. J Biol Chem 1983; 258: 12582-6.
  • 46 Coller BS, Peerschke EI, Scudder LE, Sullivan CA. Studies with a murine monoclonal antibody that abolishes ristocetin-induced binding of von Willebrand factor to platelets: Additional evidence in support of GPIb as a platelet receptor for von Willebrand factor.. Blood 1983; 61: 99-100.
  • 47 Newman PJ, Allen RW, Kahn RA, Kunicki TJ. Quantitation of membrane glycoprotein IIIa on intact human platelets using the monoclonal antibody, AP-3.. Blood 1985; 65: 227-32.
  • 48 Newman PJ, Gorski J, White GC, Gidwitz S, Cretney CJ, Aster RH. Enzymatic amplification of platelet-specific messenger RNA using the polymerase chain reaction.. J Clin Invest 1988; 82: 739-43.
  • 49 Jennings LK, Ashmun RA, Wang WC, Dockter ME. Analysis of human platelet glycoproteins IIb-IIIa and Glanzmann’s thrombasthenia in whole blood by flow cytometry.. Blood 1986; 68 (01) 173-9.
  • 50 Lefebvre P, White MD, Krumweide I, Cohen I. Role of actin in platelet function.. Eur J Cell Biol 1993; 62: 194-204.
  • 51 Schoenwaelder SM, Jackson SP, Yuan Y, Teasdale MS, Salem HH, Mitchell CA. Tyrosine kinases regulate the cytoskeletal attachment of integrin αIIbβ3 (platelet glycoprotein IIb/IIIa) and cellular retraction of fibrin polymers.. J Biol Chem 1994; 269: 32479-87.
  • 52 Schielen WJG, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence Aα-(148-160) in fibrin, but not in fibrinogen, is accessible to monoclonal antibodies.. Proc Natl Acad Sci USA 1989; 86: 8951-4.
  • 53 Ugarova TP, Budzynski AZ, Shattil SJ, Ruggeri ZM, Ginsberg MH, Plow EF. Conformational changes in fibrinogen elicited by its interaction with the platelet membrane glycoprotein GPIIb-IIIa.. J Biol Chem 1993; 268: 21080-7.
  • 54 Taylor DB, Derrick JM, Gartner TK. Antibodies to GPIIbα (300-312) inhibit fibrinogen binding, clot retraction, and platelet adhesion to multiple ligands.. Proc Soc Exp Biol Med 1994; 205: 35-43.
  • 55 Farrell DH, Thiagarajan P, Chung DW, Davie EW. Role of fibrinogen and chain sites in platelet aggregation.. Proc Natl Acad Sci 1992; 89: 10729-32.
  • 56 Holmback K, Danton MJS, Suh TT, Daugherty CC, Degen JL. Impaired platelet aggregation and sustained bleeding in mice lacking the fibrinogen motif bound by integrin αIIbβ3.. EMBO J 1996; 15: 5760-71.
  • 57 Rooney MM, Parise LV, Lord ST. Dissecting clot retraction and platelet aggregation.. J Biol Chem 1996; 271: 8553-5.