Subscribe to RSS
DOI: 10.1055/s-0037-1615268
Subthalamic Nucleus: Neuroanatomical Review
Núcleo subtalâmico: Revisão neuroanatômicaAbstract
Discovered in 1865 by Jules Bernard Luys, the subthalamic nucleus is a set of small nuclei located in the diencephalon, inferior to the thalamus and superior to the substantia nigra, that can be visualized in a posterior coronal section. Histologically, it consists of neurons compactly distributed and filled with a large number of blood vessels and sparse myelinated fibers. This review presents an analysis of this anatomical region, considering what is most recent in the literature. Subthalamic neurons are excitatory and use glutamate as the neurotransmitter. In healthy individuals, these neurons are inhibited by nerve cells located in the side globus pallidus. However, if the fibers that make up the afferent circuit are damaged, the neurons become highly excitable, thus causing motor disturbances that can be classified as hyperkinetic, for example ballism and chorea, or hypokinetic, for example Parkinson disease (PD). The advent of deep brain stimulation has given the subthalamic nucleus great visibility. Studies reveal that the stimulation of this nucleus improves the motor symptoms of PD.
Resumo
Descoberto em 1865 por Jules Bernard Luys, o núcleo subtalâmico (NST) é um conjunto de pequenos núcleos situados no diencéfalo, inferior ao tálamo e superior à substância negra, que pode ser visualizado em um corte coronal posterior. Histologicamente, consiste em neurônios distribuídos de forma compacta e preenchidos com um grande número de vasos sanguíneos e fibras mielinizadas dispersas. Esta revisão apresenta uma análise sobre essa região anatômica, considerando o que há na literatura a seu respeito. Os neurônios subtalâmicos são excitatórios e utilizam o glutamato como neurotransmissor. Em indivíduos saudáveis, esses neurônios são inibidos por células nervosas localizadas no globo pálido lateral. Contudo, se as fibras que compõem o circuito paleoestriado forem lesadas, os neurônios tornam-se altamente excitáveis, provocando assim distúrbios motores que podem ser classificados como: hipercinéticos, tais como balismo e coreia, ou hipocinéticos, por exemplo, doença de Parkinson (DP). O advento da estimulação cerebral profunda tem concedido grande visibilidade ao NST. Estudos destacam que a estimulação desse núcleo realmente ameniza os sintomas motores da DP.
Publication History
Received: 23 July 2017
Accepted: 13 November 2017
Article published online:
18 December 2017
© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Pearce JM. Thesubthalamicnucleus andJules BernardLuys (1828–97). J Neurol Neurosurg Psychiatry 2001; 71 (06) 783
- 2 Parent A, Parent M, Leroux-Hugon V. Jules Bernard Luys: a singular figure of 19th century neurology. Can J Neurol Sci 2002; 29 (03) 282-288
- 3 Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM. The subthalamic nucleus in the context of movement disorders. Brain 2004; 127 (Pt 1): 4-20
- 4 Parent A. Jules Bernard Luys and the subthalamic nucleus. Mov Disord 2002; 17 (01) 181-185
- 5 Chang HT, Kita H, Kitai ST. The fine structure of the rat subthalamic nucleus: an electron microscopic study. J Comp Neurol 1983; 221 (01) 113-123
- 6 Iwahori N. A Golgi study on the subthalamic nucleus of the cat. J Comp Neurol 1978; 182 (03) 383-397
- 7 Yelnik J, Percheron G. Subthalamic neurons in primates: a quantitative and comparative analysis. Neuroscience 1979; 4 (11) 1717-1743
- 8 Nambu A, Takada M, Inase M, Tokuno H. Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 1996; 16 (08) 2671-2683
- 9 Sato F, Parent M, Levesque M, Parent A. Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 2000; 424 (01) 142-152
- 10 Takada M, Tokuno H, Hamada I. et al. Organization of inputs from cingulate motor areas to basal ganglia in macaque monkey. Eur J Neurosci 2001; 14 (10) 1633-1650
- 11 Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 2002; 43 (02) 111-117
- 12 Parent A, Hazrati LN. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 1995; 20 (01) 128-154
- 13 Smith Y, Hazrati LN, Parent A. Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method. J Comp Neurol 1990; 294 (02) 306-323
- 14 Moriizumi T, Nakamura Y, Kitao Y, Kudo M. Ultrastructural analyses of afferent terminals in the subthalamic nucleus of the cat with a combined degeneration and horseradish peroxidase tracing method. J Comp Neurol 1987; 265 (02) 159-174
- 15 Romansky KV, Usunoff KG, Ivanov DP, Galabov GP. Corticosubthalamic projection in the cat: an electron microscopic study. Brain Res 1979; 163 (02) 319-322
- 16 Fonnum F, Gottesfeld Z, Grofova I. Distribution of glutamate decarboxylase, choline acetyl-transferase and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rats. Evidence for striatopallidal, striatoentopeduncular and striatonigral GABAergic fibres. Brain Res 1978; 143 (01) 125-138
- 17 François C, Savy C, Jan C, Tande D, Hirsch EC, Yelnik J. Dopaminergic innervation of the subthalamic nucleus in the normal state, in MPTP-treated monkeys, and in Parkinson's disease patients. J Comp Neurol 2000; 425 (01) 121-129
- 18 Joel D, Weiner I. The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry. Brain Res Brain Res Rev 1997; 23 (1-2): 62-78
- 19 Rinvik E, Ottersen OP. Terminals of subthalamonigral fibres are enriched with glutamate-like immunoreactivity: an electron microscopic, immunogold analysis in the cat. J Chem Neuroanat 1993; 6 (01) 19-30
- 20 Ferreira A, Braga F. Anatomia microcirúrgica da artéria coroídea anterior. Arq Neuro Psiquist 1990; 48 (04) 448-453
- 21 Mendes MF, de Andrade LA, Ferraz HB. [Chorea: clinical analysis of 119 cases]. Arq Neuropsiquiatr 1996; 54 (03) 419-427
- 22 Barbeau A, Duvoisin RC, Gerstenbrand F, Lakke JP, Marsden CD, Stern G. Classification of extrapyramidal disorders. Proposal for an international classification and glossary of terms. J Neurol Sci 1981; 51 (02) 311-327
- 23 Vidaković A, Dragasević N, Kostić VS. Hemiballism: report of 25 cases. J Neurol Neurosurg Psychiatry 1994; 57 (08) 945-949
- 24 Lin JJ, Chang MK. Hemiballism-hemichorea and non-ketotic hyperglycaemia. J Neurol Neurosurg Psychiatry 1994; 57 (06) 748-750
- 25 Lee MS, Marsden CD. Movement disorders following lesions of the thalamus or subthalamic region. Mov Disord 1994; 9 (05) 493-507
- 26 Kargarfard M, Eetemadifar M, Mehrabi M, Maghzi AH, Hayatbakhsh MR. Fatigue, depression, and health-related quality of life in patients with multiple sclerosis in Isfahan, Iran. Eur J Neurol 2012; 19 (03) 431-437
- 27 Baunez C, Yelnik J, Mallet L. Six questions on the subthalamic nucleus: lessons from animal models and from stimulated patients. Neuroscience 2011; 198: 193-204
- 28 Tosta ED. Rieder, Carlos L. Borges, Vanderci. Doença de Parkinson: Recomendações. 1ª ed. São Paulo: Omnifarma; 2010
- 29 Postuma RB, Lang AE. Hemiballism: revisiting a classic disorder. Lancet Neurol 2003; 2 (11) 661-668
- 30 Coral P, Teive HAG, Werneck LC. Hemibalismo: relato de oito casos. Arq Neuropsiquiatr 2000; 58 (3A): 698-703
- 31 Lang AE. Persistent hemiballismus with lesions outside the subthalamic nucleus. Can J Neurol Sci 1985; 12 (02) 125-128