Thromb Haemost 2001; 85(03): 514-520
DOI: 10.1055/s-0037-1615614
Review Article
Schattauer GmbH

Rho-kinase Is Involved in the Sustained Phosphorylation of Myosin and the Irreversible Platelet Aggregation Induced by PAR1 Activating Peptide

K. Missy
1   INSERM, Unité 326, Institut Fédératif de Recherche 30, Hôpital Purpan, Toulouse, France
,
M. Plantavid
1   INSERM, Unité 326, Institut Fédératif de Recherche 30, Hôpital Purpan, Toulouse, France
,
P. Pacaud*
,
C. Viala
1   INSERM, Unité 326, Institut Fédératif de Recherche 30, Hôpital Purpan, Toulouse, France
,
H. Chap
1   INSERM, Unité 326, Institut Fédératif de Recherche 30, Hôpital Purpan, Toulouse, France
,
B. Payrastre
1   INSERM, Unité 326, Institut Fédératif de Recherche 30, Hôpital Purpan, Toulouse, France
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 25. Mai 2000

Accepted after resubmission 12. Oktober 2000

Publikationsdatum:
08. Dezember 2017 (online)

Summary

We have addressed the role of Rho-kinase in the different steps of thrombin receptor agonist peptide (TRAP) -induced platelet activation. Interestingly, under physiological conditions, incubation of platelets with increasing concentrations of the specific Rho-kinase inhibitor Y-27632 resulted in a dose-dependent reversion of the aggregation induced by 10 μM TRAP, without affecting serotonin secretion. Addition of Y-27632 after three minutes of TRAP stimulation, when the maximal aggregation was reached, resulted in a rapid disaggregation of platelets. Accordingly, the early peak of myosin light chain (MLC) phosphorylation induced by TRAP was not affected by Y-27632 but its sustained phosphorylation, observed during the irreversible phase of aggregation, was dependent of Rho-kinase activity. The rapid decrease in MLC phosphorylation upon Y-27632 treatment correlated well with the specific disappearance of myosin heavy chain from the cytoskeleton and preceded platelet disaggregation. Finally, we provide evidence that secreted ADP, known to play a key role in TRAP-induced irreversible phase of aggregation, was involved in the sustained MLC phosphorylation through Rho-kinase and could be replaced by epinephrine.

* INSERM, Unité 533, Faculté des Sciences et Techniques de Nantes, Nantes, France


 
  • References

  • 1 Narumiya S, Ishizaki T, Watanabe N. Rho Effectors and Reorganization of Actin Cytoskeleton. FEBS Lett 1997; 410: 68-72.
  • 2 Van Aelst L, D’Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev 1997; 11: 2295-322.
  • 3 Ridley AJ. RHO – Theme and variations. Curr Biol 1996; 6: 1256-64.
  • 4 Hall A. Rho GTPases and the Actin Cytoskeleton. Science 1998; 279: 509-14.
  • 5 Leung T, Chen XQ, Manser E, Lim L. The P160 RhoA-Binding Kinase ROK-Alpha Is a Member of a Kinase Family and Is Involved in the Reorganization of the Cytoskeleton. Mol Cell Biol 1996; 16: 5313-27.
  • 6 Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 1997; 275: 1308-11.
  • 7 Ishizaki T, Naito M, Fujisawa K, Maekawa M, Watanabe N, Saito Y, Narumiya S. p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett 1997; 404: 118-24.
  • 8 Sahai E, Alberts AS, Treisman R. RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. Embo J 1998; 17: 1350-61.
  • 9 Rottner K, Hall A, Small J. V.. Interplay between Rac and Rho in the control of substrate contact dynamics. Curr Biol 1999; 9: 640-8.
  • 10 Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Regulation Of Myosin Phosphatase By Rho and Rho-Associated Kinase (RhoKinase). Science 1996; 273: 245-8.
  • 11 Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K. Phosphorylation and Activation Of Myosin By Rho-Associated Kinase (Rho-Kinase). J Biol Chem 1996; 271: 20246-9.
  • 12 Chihara K, Amano M, Nakamura N, Yano T, Shibata M, Tokui T, Ichikawa H, Ikebe R, Ikebe M, Kaibuchi K. Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rhokinase. J Biol Chem 1997; 272: 25121-7.
  • 13 Nakai K, Suzuki Y, Kihira H, Wada H, Fujioka M, Ito M, Nakano T, Kaibuchi K, Shiku H, Nishikawa M. Regulation of myosin phosphatase through phosphorylation of the myosin-binding subunit in platelet activation. Blood 1997; 90: 3936-42.
  • 14 Suzuki Y, Yamamoto M, Wada H, Ito M, Nakano T, Sasaki Y, Narumiya S, Shiku H, Nishikawa M. Agonist-induced regulation of myosin phosphatase activity in human platelets through activation of Rho-kinase. Blood 1999; 93: 3408-17.
  • 15 Daniel JL, Molish IR, Rigmaiden M, Stewart G. Evidence for a role of myosin phosphorylation in the initiation of the platelet shape change response. J Biol Chem 1984; 259: 9826-31.
  • 16 Klages B, Brandt U, Simon MI, Schultz G, Offermanns S. Activation of G12/G13 results in shape change and Rho/Rho-kinase- mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol 1999; 144: 745-54.
  • 17 Bauer M, Retzer M, Wilde JI, Maschberger P, Essler M, Aepfelbacher M, Watson SP, Siess W. Dichotomous regulation of myosin phosphorylation and shape change by Rho-kinase and calcium in intact human platelets. Blood 1999; 94: 1665-72.
  • 18 Paul BZ, Daniel JL, Kunapuli SP. Platelet shape change is mediated by both calcium-dependent and-independent signaling pathways. J Biol Chem 1999; 274: 28293-300.
  • 19 Morii N, Teru-uchi T, Tominaga T, Kumagai N, Kozaki S, Ushikubi F, Narumiya S. A rho gene product in human blood platelets. II. Effects of the ADP-ribosylation by botulinum C3 ADP-ribosyltransferase on platelet aggregation. J Biol Chem 1992; 267: 20921-6.
  • 20 Leng L, Kashiwagi H, Ren XD, Shattil SJ. RhoA and the function of platelet integrin αIIbβ3. Blood 1998; 91: 4206-15.
  • 21 Shattil SJ, Kashiwagi H, Pampori N. Integrin signaling: the platelet paradigm. Blood 1998; 91: 2645-57.
  • 22 Aoki T, Tomiyama Y, Honda S, Senzaki K, Tanaka A, Okubo M, Takahashi F, Takasugi H, Seki J. Difference of [Ca2+]i movements in platelets stimulated by thrombin and TRAP; the involvement of αIIbβ3-mediated TXA2 synthesis. Thromb Haemost 1998; 79: 1184-90.
  • 23 Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997; 389: 990-4.
  • 24 Cazenave JP, Hemmendinger S, Beretz A, Sutter-Bay A, Launay J. Platelet aggregation: a tool for clinical investigation and pharmacological study. Methodology. Ann Biol Clin (Paris) 1983; 41: 167-79.
  • 25 Holmsen H, Day HJ. The selectivity of the thrombin-induced platelet release reaction: subcellular localization of released and retained constituents. J Lab Clin Med 1970; 75: 840-55.
  • 26 Guinebault C, Payrastre B, Racaud-Sultan C, Mazarguil H, Breton M, Mauco G, Plantavid M, Chap H. Integrin dependent translocation of phosphoinositide 3-kinase to the cytoskeleton of thrombin activated platelets involves specific interactions of p85alpha with actin filaments and focal adhesion kinase. J Cell Biol 1995; 129: 831-42.
  • 27 Giuriato S, Payrastre B, Drayer AL, Plantavid M, Woscholski R, Parker P, Erneux C, Chap H. Tyrosine phosphorylation and relocation of SHIP are integrin-mediated in thrombin-stimulated human blood platelets. J Biol Chem 1997; 272: 26857-63.
  • 28 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680-5.
  • 29 Daniel JL, Sellers JR. Purification and characterization of platelet myosin. Methods Enzymol 1992; 215: 78-88.
  • 30 Lau LF, Pumiglia K, Cote YP, Feinstein MB. Thrombin-receptor agonist peptides, in contrast to thrombin itself, are not full agonists for activation and signal transduction in human platelets in the absence of platelet-derived secondary mediators. Biochem J 1994; 303: 391-400.
  • 31 Trumel C, Payrastre B, Plantavid M, Hechler B, Viala C, Presek P, Martinson E, Cazenave JP, Chap H, Gachet C. A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood 1999; 94: 4156-65.
  • 32 Ingall AH, Dixon J, Bailey A, Coombs ME, Cox D, McInally JI, Hunt SF, Kindon ND, Teobald BJ, Willis PA, Humphries RG, Leff P, Clegg JA, Smith JA, Tomlinson W. Antagonists of the platelet P2T receptor: a novel approach to antithrombotic therapy. J Med Chem 1999; 42: 213-20.
  • 33 Itoh K, Hara T, Shibata N. Dephosphorylation of platelet myosin by myosin light chain kinase. Biochim Biophys Acta 1992; 1133: 286-92.
  • 34 Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature 1994; 372: 231-6.
  • 35 Law DA, DeGuzman FR, Heiser P, Ministri-Madrid K, Killeen N, Phillips DR. Integrin cytoplasmic tyrosine motif is required for outside-in alphaIIb-beta3 signalling and platelet function. Nature 1999; 401: 808-11.
  • 36 Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 1999; 285: 895-8.
  • 37 Tominaga T, Barber DL. Na-H exchange acts downstream of RhoA to regulate integrin-induced cell adhesion and spreading. Mol Biol Cell 1998; 9: 2287-303.
  • 38 Tominaga T, Ishizaki T, Narumiya S, Barber DL. p160ROCK mediates RhoA activation of Na-H exchange. EMBO J 1998; 17: 4712-22.
  • 39 Offermanns S, Toombs CF, Hu YH, Simon MI. Defective Platelet Activation in G-Alpha(Q)-Deficient Mice. Nature 1997; 389: 183-6.
  • 40 Buhl AM, Johnson NL, Dhanasekaran N, Johnson GL. Gα12 and Gα13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem 1995; 270: 24631-4.
  • 41 Gohla A, Harhammer R, Schultz G. The G-protein G13 but not G12 mediates signaling from lysophosphatidic acid receptor via epidermal growth factor receptor to Rho. J Biol Chem 1998; 273: 4653-9.
  • 42 Katoh H, Aoki J, Yamaguchi Y, Kitano Y, Ichikawa A, Negishi M. Constitutively active Galpha12, Galpha13, and Galphaq induce Rho-dependent neurite retraction through different signaling pathways. J Biol Chem 1998; 273: 28700-7.
  • 43 Gohla A, Offermanns S, Wilkie TM, Schultz G. Differential involvement of Galpha12 and Galpha13 in receptor-mediated stress fiber formation. J Biol Chem 1999; 274: 17901-7.