Thromb Haemost 2001; 85(04): 596-603
DOI: 10.1055/s-0037-1615639
Review Articles
Schattauer GmbH

Modeling Human Zymogen Factor IX

Lalith Perera
1   Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
,
Thomas A. Darden
2   National Institute of Environment Health Science, Research Triangle Park, North Carolina, USA
,
Lee G. Pedersen
1   Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
2   National Institute of Environment Health Science, Research Triangle Park, North Carolina, USA
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 22. August 2000

Accepted after revision 14. November 2000

Publikationsdatum:
08. Dezember 2017 (online)

Summary

Modern theoretical techniques are employed to provide complete three dimensional structure for the zymogen and activated forms of human coagulation factors IX and IXa. These structures are fully calcium bound and equilibrated in an electrically neutral aqueous environment. The relationship of structure to mutational data is examined. We find that a substantial relative orientational change of the catalytic domain occurs on activation. Also, we find that the electrostatistically dipolar nature of the catalytic domain is substantially modified upon activation, with cleavage of the negatively charged activation peptide leaving behind a largely hydrophobic face in factor IXa. While the backbone atoms of the catalytic residues have little relative movement, nearby loops are found that do move. The presence or absence of these changes likely defines specificity.

 
  • References

  • 1 Soriano Garcia MW, Padmanabhan K, de Vos AM, Tulinsky A. The Ca(II)-ion and membrane binding structure of the Gla-domain of Ca(II)-prothrombin fragment 1. Biochemistry 1992; 31: 2554-66.
  • 2 Padmanabhan K, Padmanabhan KP, Tulinsky A, Park CH, Bode W, Huber R, Blankenship DT, Cardin AD, Kisiel W. Structrue of human Des(1-45) factor Xa at 2.2 Å resolution. J Mol Biol 1993; 232: 947-66.
  • 3 Brandstetter H, Kuhne A, Bode W, Huber R, vonder Saal W, Wirthensohn K, Engh RA. X-ray structure of active site-inhibited clotting factor Xa. J Biol Chem 1996; 271: 29988-92.
  • 4 Brandstetter H, Bauer M, Huber R, Lollar P, Bode W. X-ray structure of clotting factor IXa. Proc Nat Acad Sci 1995; 92: 9796-800.
  • 5 Hopfner KP, Lang A, Karcher A, Sichler K, Kopetzki E, Brandstetter H, Huber R, Bode W, Engh RA. Coagulation factor IXa: the relaxed conformation of Tyr99 blocks substrate binding. Structure 1999; 989-96.
  • 6 Banner DW, D’Arcy A, Chene C, Winkler FK, Guha A, Konigsberg WH, Nemerson Y, Kirchofer D. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature 1996; 380: 41-6.
  • 7 Ashton AW, Boehm MK, Johnson DJD, Kemball-Cook G, Perkins SJ. The solution structure of human coagulation factor VIIa in its complex with tissue factor is similar to free factor VIIa. Biochemistry 1998; 37: 8208-17.
  • 8 Zhang E, St Charles R, Tulinsky A. Structure of extracellular tissue factor with factor VIIa inhibited with a BPTI mutant. J Mol Biol 1999; 285: 2089-104.
  • 9 Pike ACW, Brzozowski AM, Roberts SM, Olsen OH, Persson E. Structure of human factor VIIa and its implications for the triggering of blood coagulation. Proc Nat Acad Sci 1999; 96: 8925-30.
  • 10 Mather T, Oganessyan V, Hof P, Huber R, Foundling S, Esmon C, Bode W. The 2.8 A^o crystal structure of Gla-domainless activated protein C. EMBO J 1996; 15: 6822-31.
  • 11 Darden T, York D, Pedersen L. Particle Mesh Ewald-An N log(N) method for Ewald sums in large systems. J Chem Phys 1993; 98: 10089-92.
  • 12 Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys 1995; 103: 8577-93.
  • 13 York DM, Darden TA, Pedersen LG. The effect of long-range electrostatics in simulations of macromolecular crystals. J Chem Phys 1993; 99: 8345-8.
  • 14 Cheatham TE, Miller JL, Fox T, Darden TA, Kollman PA. Molecular-dynamics simulations on solvated biomolecular system – the particle mesh method leads to stable trajectories of DNA, RNA and proteins. J Am Chem Soc 1995; 117: 4193-4.
  • 15 Darden T, Perera L, Li LP, Pedersen L. New tricks for modelers from the crystallographic toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure with Folding & Design 1999; 7: R55-60.
  • 16 York DM, Wlodawer A, Pedersen LG, Darden T. Atomic-level accuracy in simulations of large protein crystals. Proc Nat Acad Sci 1994; 91: 8715-8.
  • 17 Kombo DC, Young MA, Beveridge DL. Molecular Dynamics simulation accurately predicts the experimentally-observed distributions of the (C, N, O) protein atoms around water molecules and sodium ions. Proteins-Stru. Funct Gen 2000; 39: 212-5.
  • 18 Cheatham TE, Kollman PA. Insight into the stabilization of A-DNA by specific ion association: spontaneous B-DNA to A-DNA transitions observed in molecular dynamics simulations of d[ACCCGCGGGT] (2) in the presence of hexamminecobalt (III). Structure 1997; 5: 1297-311.
  • 19 Feller SE, MacKerell AD. An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 2000; 104: 7510-5.
  • 20 Feller SE, Huster D, Gawrisch K. Interpretation of NOESY Cross- Relaxation rates from molecular dynamics simulation of a lipid bilayer. J Am Chem Soc 1999; 121: 8963-4.
  • 21 Thiviyanthan V, Guliaev AB, Leontis NB, Gorenstein DG. Solution conformation of a bulged adenosine base in an RNA duplex by relaxation matrix refinement. J Mol Biol 2000; 300: 1143-54.
  • 22 Boresch S, Hochtl P, Steinhauser O. Studying the dielectric properties of a protein solution by computer simulation. J Phys Chem B 2000; 104: 8743-52.
  • 23 Li LP, Darden TA, Freedman SJ, Furie BC, Furie B, Baleja JD, Smith H, Hiskey RG, Pedersen LG. Refinement of the NMR solution structure of the gamma-carobxyglutamic acid domain of coagulation factor IX using molecular dynamics simulation with initial Ca2+ positions determined by a genetic algorithm. Biochem 1997; 36: 2132-8.
  • 24 Bode W, Brandstetter H, Mather T, Stubbs MT. Comparative Analysis of Haemostatic Proteinases: Structural aspects of thrombin, factor Xa, factor IXa and protein C. Thromb Haemost 1997; 78: 501-11.
  • 25 Bajaj P. Region of Factor IXa protease domain that interacts with factor VIIIa: analysis of select hemophilia B mutants. Thromb Haemost 1999; 82: 218-25.
  • 26 Gaboriaud C, Rossi V, Fontecilla-Camps JC, Arlaud GJ. Evolutionary conserved rigid module-domain interactions can be detected at the sequence level: The examples of complement and blood coagulation proteases. J Mol Biol 1998; 282: 459-70.
  • 27 Kalafatis M, Egan JO, van’t Veer C, Cawthern KM, Mann KG. The regulation of clotting factors. Crit. Rev. in Eukar. Gene Expr 1997; 7: 241-80.
  • 28 Mathur A, Zhong D, Sabharwal AK, Smith KJ, Bajaj SP. Interaction of factor IXa with factor VIIIa. J Biol Chem 1997; 272: 23418-26.
  • 29 Wang D, Bode W, Huber R. Bovine chymotrypsinogen. A X-ray crystal structure analysis and refinement of a new crystal form at 1.8 Å. J Mol Biol 1985; 185: 595-624.
  • 30 Vijayalakshmi J, Padmanabhan KP, Mann KG, Tulinsky A. The isomorphous structures of prethrombin2, hirugen-, and PPACK-thrombin: changes accompanying activation and exosite binding to thrombin. Protein Sci 1994; 3: 2254-71.
  • 31 Gomis-Ruth FX, Gomez M, Bode W, Huber R, Aviles FX. The three dimensional structure of the native ternary complex of bovine pancreatic procarboxypeptidase A with proproteinase E and chymotrpsingen C. EMBO J 1995; 14: 4387-94.
  • 32 Perera L, Foley C, Darden TA, Stafford D, Mather T, Esmon CT, Pedersen LG. Modeling zymogen protein C. Biophys J 2000; 79: 2925-43.
  • 33 Case DA, Pearlman DA, Caldwell JW, Cheatham TE III, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Ferguson DM, Radmer RJ, Siebel GL, Singh UC, Kollman PA. AMBER 5. 1997. University of California at San Francisco.
  • 34 Rao A, Handford P, Mayhew M, Knott V, Brownlee GG, Stuart D. The structure of a Ca2+-binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell 1995; 82: 131-41.
  • 35 Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz Jr KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 1996; 117: 5179-97.
  • 36 Harvey SC, Tan RKZ, Cheatham TE III. The flying ice cube: Velocity rescaling in molecular dynamics leads to violation of energy equipartition. J Comp Chem 1998; 18: 726-40.
  • 37 Cheatham TE, Brooks BR. Recent advances in molecular dynamics simulation towards the realistic representation of biomolecules in solution. Theo Chem Accts 1998; 99: 279-88.
  • 38 Freedman SJ, Furie BC, Furie B, Baleja JD. Structure of the calcium ion-bound gamma-carboxyglutamic acid-rich domain of factor IX. Biochem 1995; 34: 12126-37.
  • 39 Gillis S, Furie BC, Furie B, Patel H, Huberty M, Switzer M, Foster WB, Scoble HA, Bond MD. Gamma-carobxyglutamic acids 36 and 40 do not contribute to human factor ix function. Prot Sci 1997; 6: 185-96.
  • 40 Stenflo J, Stenberg Y, Muranyi A. Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion module interactions. Biochim Biophys Acta 2000; 1477: 51-63.
  • 41 Stenflo J. Contributions of Gla and EGF-like domains to the function of vitamin K-dependent coagulation factors. Crit. Rev. in Eukar. Gene Expr 1999; 9: 59-88.
  • 42 Persson KEM, Astermark J, Bjok Stenflo J. Calcium binding to the first EGF-like module of human factor ix in a recombinant fragment containing residues 1-85. FEBS Letts 1998; 421: 100-4.
  • 43 Sun MF, Zhao M, Gailani D. Identification of Amino Acids in the Factor XI Apple 3 domain required for activation of factor IX. J Biol Chem 1999; 274: 36373-8.
  • 44 Rezaie AR, Mather T, Sussman F, Esmon CT. Mutation of Glu-80Lys results in a protein C mutant that no longer requires Ca2+ for rapid activation by the thrombin-thrombomodulin complex. J Biol Chem 1994; 269: 3151-4.
  • 45 Blow DM, Steitz TA. X-ray diffraction studies of enzymes. Annu Rev Biochem 1970; 39: 63-100.
  • 46 Nicholls A, Sharp KA, Honig B. GRASP-Graphical Representation and Analysis of Surface Properties. Proteins 1991; 11: 281-96.
  • 47 Mutucumarana VP, Duffy EJ, Lollar P, Johnson AE. The active-site of factor IXa is located far above the membrane surface and its conformation is altered upon association with factor VIIIa-a fluorescence study. J Biol Chem 1992; 267: 17012-21.
  • 48 Christophe OD, Lenting PJ, Kolkman JA, Brownlee GG, Mertens K. Blood coagulation factor IX residues Glu78 and Arg94 provide a link between both epidermal growth factor-like domain that is crucial in the interaction with factor VIII light chain. J Biol Chem 1998; 273: 222-7.
  • 49 Celie PHN, Lenting PJ, Mertens K. Hydrophobic contact between the two epidermal growth factor-like domains of blood coagulation factor IX contributes to enzymatic activity. J Biol Chem 2000; 275: 229-34.
  • 50 High KA, Roberts HR. Factor IX. In: Molecular Basis of Thrombosis and Hemostasis. Roberts HR, High KA. eds. New York, NY: Marcel Dekker; 1995: 215-31.