Thromb Haemost 2001; 85(02): 207-217
DOI: 10.1055/s-0037-1615678
Review Article
Schattauer GmbH

An Update of the Grützbalgϕ Hypothesis: The Role of Thrombosis and Coagulation in Atherosclerotic Progression

Karen O. Yee
1   Department of Pathology, University of Washington, Seattle, Washington, USA
,
Yuji Ikari
1   Department of Pathology, University of Washington, Seattle, Washington, USA
,
Stephen M. Schwartz
1   Department of Pathology, University of Washington, Seattle, Washington, USA
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 11. Mai 2000

Accepted after revision 27. Juli 2000

Publikationsdatum:
08. Dezember 2017 (online)

Summary

While a great deal has been learned about the initiation of atherosclerosis, much less is known about the factors that ultimately determine progression and clinical manifestations. In this review we will focus on the possible role of coagulation, especially intramural fibrin in lesion progression.

 
  • References

  • 1 Grainger DJ, Kemp PR, Liu AC, Lawn RM, Metcalfe JC. Activation of transforming growth factor-beta is inhibited in transgenic apolipoprotein(a) mice. Nature 1994; 370: 460-2.
  • 2 Xiao Q, Danton MJ, Witte DP, Kowala MC, Valentine MT, Degen JL. Fibrinogen deficiency is compatible with the development of atherosclerosis in mice. J Clin Invest 1998; 101: 1184-94.
  • 3 Virchow R. Cellular Pathology as Based Upon Physiological and Pathological Histology. 2th ed. Birmingham, Alabama: Classics of Medicine Library; 1858
  • 4 Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons From Sudden Coronary Death : A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol 2000; 20: 1262-75.
  • 5 Rosenfeld ME, Carew TE, von Hodenberg E, Pittman RC, Ross R, Steinberg D. Autoradiographic analysis of the distribution of 125I-tyraminecellobiose-LDL in atherosclerotic lesions of the WHHL rabbit. Arterioscler Thromb 1992; 12: 985-95.
  • 6 Schwenke DC, St. Clair RW.. Accumulation of 125I-tyramine cellobiose-labeled low density lipoprotein is greater in the atherosclerosis-susceptible region of White Carneau pigeon aorta and further enhanced once athero-sclerotic lesions develop. Arterioscler Thromb 1992; 12: 446-60.
  • 7 Hollander W. Role of arterial lipoproteins in the formation of the fibrous plaque. Adv Exp Med Biol 1977; 82: 793-9.
  • 8 Hollander W. Recent advances in experimental and molecular pathology; influx, synthesis, and transport of arterial lipoproteins in atherosclerosis. Exp Mol Pathol 1967; 7: 248-58.
  • 9 Fry DL, Herderick EE, Johnson DK. Local intimal-medial uptakes of 125I-albumin, 125I-LDL, and parenteral Evans blue dye protein complex along the aortas of normocholesterolemic minipigs as predictors of subsequent hypercholesterolemic atherogenesis. Arterioscler Thromb 1993; 13: 1193-204.
  • 10 Smith EB. Fibrin deposition and fibrin degradation products in athero-sclerotic plaques. Thromb Res 1994; 75: 329-35.
  • 11 Smith EB, Staples EM. Haemostatic factors in human aortic intima. Lancet 1981; 1 8231 1171-4.
  • 12 Penn MS, Chisolm GM, Schwartz SM. Visualization and quantification of transmural concentration profiles of macromolecules across the arterial wall. Circ Res 1990; 67: 11-22.
  • 13 Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 1995; 15: 551-61.
  • 14 Geer JC, Haust MD. Smooth muscle cells in atherosclerosis. Monogr Atheroscler 1972; 2: 1-140.
  • 15 Parker F, Odland GF. A corrective histochemical, biochemical and electron microscopic study of experimental atherosclerosis in the rabbit aorta with special references to the myo-intimal cell. Am J Pathol 1966; 48: 197-239.
  • 16 Webster WS, Bishop SP, Geer JC. Experimental aortic intimal thickening. I. Morphology and source of intimal cells. Am J Pathol 1974; 76: 245-84.
  • 17 Ross R. Atherosclerosis – an inflammatory disease [see comments]. N Engl J Med 1999; 340: 115-26.
  • 18 Wissler RW. Update on the pathogenesis of atherosclerosis. Am J Med 1991; 91: 3S-9S.
  • 19 Streblow DN, Soderberg-Naucler C, Vieira J, Smith P, Wakabayashi E, Ruchti F, Mattison K, Altschuler Y, Nelson JA. The human cytomegalo-virus chemokine receptor US28 mediates vascular smooth muscle cell migration [In Process Citation]. Cell 1999; 99: 511-20.
  • 20 Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990′s. Nature 1993; 362: 801-13.
  • 21 Faggiotto A, Ross R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 1984; 4: 341-56.
  • 22 Gerrity RG. The role of the monocyte in atherogenesis: II. Migration of foam cells from atherosclerotic lesions. Am J Pathol 1981; 103: 191-200.
  • 23 Seo HS, Lombardi DM, Polinsky P, Powell-Braxton L, Bunting S, Schwartz SM, Rosenfeld ME. Peripheral vascular stenosis in apolipoprotein E-deficient mice. Potential roles of lipid deposition, medial atrophy, and adventitial inflammation. Arterioscler Thromb Vasc Biol 1997; 17: 3593-601.
  • 24 Stary HC. Natural history and histological classification of atherosclerotic lesions : An update [In Process Citation]. Arterioscler Thromb Vasc Biol 2000; 20: 1177-8.
  • 25 Schwartz SM, Reidy MA, O’Brien ER. Assessment of factors important in atherosclerotic occlusion and restenosis. Thromb Haemost 1995; 74: 541-51.
  • 26 Bendeck MP, Irvin C, Reidy MA. Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury. Circ Res 1996; 78: 38-43.
  • 27 Carmeliet P, Moons L, Ploplis V, Plow E, Collen D. Impaired arterial neointima formation in mice with disruption of the plasminogen gene. J Clin Invest 1997; 99: 200-8.
  • 28 Moons L, Shi C, Ploplis V, Plow E, Haber E, Collen D, Carmeliet P. Reduced transplant arteriosclerosis in plasminogen-deficient mice. J Clin Invest 1998; 102: 1788-97.
  • 29 Allaire E, Forough R, Clowes M, Starcher B, Clowes AW. Local over-expression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J Clin Invest 1998; 102: 1413-20.
  • 30 Allaire E, Hasenstab D, Kenagy RD, Starcher B, Clowes MM, Clowes AW. Prevention of aneurysm development and rupture by local over-expression of plasminogen activator inhibitor-1. Circulation 1998; 98: 249-55.
  • 31 Schwartz SM, de Blois D, O’Brien ER. The intima. Soil for atherosclerosis and restenosis. Circ Res 1995; 77: 445-65.
  • 32 Weninger WJ, Müller GB, Reiter C, Meng S, Rabl SU. Intimal hyperplasia of the infant parasellar carotid artery: a potential developmental factor in atherosclerosis and SIDS. Circ Res 1999; 85: 970-5.
  • 33 Ikari Y, McManus BM, Kenyon J, Schwartz SM. Neonatal intima formation in the human coronary artery. Arterioscler Thromb Vasc Biol 1999; 19: 2036-40.
  • 34 Slomp J, Gittenberger-de Groot AC, Glukhova MA, Conny vM, Kockx MM, Schwartz SM, Koteliansky VE. Differentiation, dedifferentiation, and apoptosis of smooth muscle cells during the development of the human ductus arteriosus. Arterioscler Thromb Vasc Biol 1997; 17: 1003-9.
  • 35 Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, Eichwald E, Keating MT. Elastin is an essential determinant of arterial morphogenesis. Nature 1998; 393: 276-80.
  • 36 Dilley RJ, Schwartz SM. Vascular remodeling in the growth hormone transgenic mouse. Circ Res 1989; 65: 1233-40.
  • 37 Mason CA, Bigras JL, O’Blenes SB, Zhou B, McIntyre B, Nakamura N, Kaneda Y, Rabinovitch M. Gene transfer in utero biologically engineers a patent ductus arteriosus in lambs by arresting fibronectin-dependent neointimal formation [see comments]. Nat Med 1999; 5: 176-82.
  • 38 Clyman RI, Goetzman BW, Chen YQ, Mauray F, Kramer RH, Pytela R, Schnapp LM. Changes in endothelial cell and smooth muscle cell integrin expression during closure of the ductus arteriosus: An immunohistochemical comparison of the fetal, preterm newborn, and full-term newborn rhesus monkey ductus. Pediatric Research 1996; 40: 198-208.
  • 39 Yee KO, Rooney MM, Giachelli CM, Lord ST, Schwartz SM. Role of beta1 and beta3 integrins in human smooth muscle cell adhesion to and contraction of fibrin clots in vitro. Circ Res 1998; 83: 241-51.
  • 40 Ikari Y, Yee KO, Hatsukami TS, Schwartz SM. Human carotid artery smooth muscle cells rarely express αvβ3 integrin at sites of recent plaque rupture. Thromb Haemost 2000; 84: 338-44.
  • 41 Chung IM, Benditt EP, Schwartz SM, Murry CE. Monoclonality in atherosclerosis may arise by expansion of a pre-existing clone of smooth muscle cells. Circulation 1996; 94: 1-238.
  • 42 Chung IM, Schwartz SM, Murry CE. Clonal architecture of normal and atherosclerotic aorta: implications for atherogenesis and vascular development. Am J Pathol 1998; 152: 913-23.
  • 43 Courtman DW, Schwartz SM, Hart CE. Sequential injury of the rabbit abdominal aorta induces intramural coagulation and luminal narrowing independent of intimal mass: extrinsic pathway inhibition eliminates luminal narrowing. Circ Res 1998; 82: 996-1006.
  • 44 Fuster V. Elucidation of the role of plaque instability and rupture in acute coronary events. Am J Cardiol 1996; 76: 24C-33C.
  • 45 Giesen PL, Rauch U, Bohrmann B, Kling D, Roque M, Fallon JT, Badimon JJ, Himber J, Riederer MA, Nemerson Y. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA 1999; 96: 2311-5.
  • 46 Nemerson Y, Giesen PL. Some thoughts about localization and expression of tissue factor. Blood Coagul Fibrinolysis 1998; 9 (Suppl. 01) S45-S47.
  • 47 Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995; 92: 657-71.
  • 48 Alderman EL, Corley SD, Fisher LD, Chaitman BR, Faxon DP, Foster ED, Killip T, Sosa JA, Bourassa MG. Five-year angiographic follow-up of factors associated with progression of coronary artery disease in the Coronary Artery Surgery Study (CASS). CASS Participating Investigators and Staff. J Am Coll Cardiol 1993; 22: 1141-54.
  • 49 Nobuyoshi M, Tanaka M, Nosaka H, Kimura T, Yokoi H, Hamasaki N, Kim K, Shindo T, Kimura K. Progression of coronary atherosclerosis: is coronary spasm related to progression?. J Am Coll Cardiol 1991; 18: 904-10.
  • 50 Giroud D, Li JM, Urban P, Meier B, Rutishauer W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography [see comments]. Am J Cardiol 1992; 69: 729-32.
  • 51 Ambrose JA, Winters SL, Arora RR, Eng A, Riccio A, Gorlin R, Fuster V. Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol 1986; 7: 472-8.
  • 52 Davies MJ. Anatomic features in victims of sudden coronary death. Coronary artery pathology. Circulation 1992; 85 (Suppl. 01) I19-I24.
  • 53 Prescott MF, Hasler-Rapacz J, Linden-Reed J, Rapacz J. Familial hypercholesterolemia associated with coronary atherosclerosis in swine bearing different alleles for apolipoprotein B. Ann N. Y Acad Sci 1995; 748: 283-92.
  • 54 Caligiuri G, Levy B, Pernow J, Thorén P, Hansson GK. Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. Proc Natl Acad Sci USA 1999; 96: 6920-4.
  • 55 Fishbein MC, Siegel RJ. Pathology of coronary atherosclerosis: implications for intravascular ultrasound imaging. In: Siegel RJ. ed. Intravascular Ultrasound Imaging in Coronary Artery Disease. New York: Marcel Dekker, Inc.; 1998: 1-17.
  • 56 Libby P, Hansson GK. Involvement of the immune system in human atherogenesis: Current knowledge and unanswered questions. Lab Invest 1991; 64: 5-15.
  • 57 Nicoletti A, Kaveri S, Caligiuri G, Bariéty J, Hansson GK. Immunoglobulin treatment reduces atherosclerosis in apo E knockout mice. J Clin Invest 1998; 102: 910-8.
  • 58 Zhou X, Paulsson G, Stemme S, Hansson GK. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest 1998; 101: 1717-25.
  • 59 Galis ZS, Sukhova GK, Libby P. Microscopic localization of active proteases by in situ zymography: detection of matrix metalloproteinase activity in vascular tissue. FASEB J 1995; 9: 974-80.
  • 60 Schonbeck U, Mach F, Sukhova GK, Atkinson E, Levesque E, Herman M, Graber P, Basset P, Libby P. Expression of stromelysin-3 in atherosclerotic lesions: regulation via CD40-CD40 ligand signaling in vitro and in vivo. J Exp Med 1999; 189: 843-53.
  • 61 Sukhova GK, Schonbeck U, Rabkin E, Schoen FJ, Poole AR, Billinghurst RC, Libby P. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 1999; 99: 2503-9.
  • 62 Hazen SL, Hsu FF, Gaut JP, Crowley JR, Heinecke JW. Modification of proteins and lipids by myeloperoxidase. Methods Enzymol 1999; 300: 88-105.
  • 63 Desrochers PE, Mookhtiar K, Van Wart HE, Hasty KA, Weiss SJ. Proteolytic inactivation of alpha 1-proteinase inhibitor and alpha 1- antichymotrypsin by oxidatively activated human neutrophil metalloproteinases. J Biol Chem 1992; 267: 5005-12.
  • 64 Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary athero-sclerotic plaques. J Clin Invest 1995; 95: 2266-74.
  • 65 Geng YJ, Henderson LE, Levesque EB, Muszynski M, Libby P. Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1997; 17: 2200-8.
  • 66 Han DKM, Wright ME, Dixit VM, Karsan A, Schwartz BR, Harlan JM, Prueitt R, Seo HS, Lynch DH, Schwartz SM. Evidence for presence and function of Fas and Fas-ligand in the vessel wall: Mediation of smooth muscle cell apoptosis in human coronary atherosclerosis. J Biol Chem. 1997 (Submitted).
  • 67 Pollman MJ, Hall JL, Mann MJ, Zhang L, Gibbons GH. Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med 1998; 4: 222-7.
  • 68 Taylor AJ, Farb AA, Angello DA, Burwell LR, Virmani R. Proliferative activity in coronary atherectomy tissue. Clinical, histopathologic, and immunohistochemical correlates. Chest 1995; 108: 815-20.
  • 69 O’Brien ER, Alpers CE, Stewart DK, Ferguson M, Tran N, Gordon D, Benditt EP, Hinohara T, Simpson JB, Schwartz SM. Proliferation in primary and restenotic coronary atherectomy tissue. Implications for anti-proliferative therapy. Circ Res 1993; 73: 223-31.
  • 70 Gordon D, Reidy MA, Benditt EP, Schwartz SM. Cell proliferation in human coronary arteries. Proc Natl Acad Sci USA 1990; 87: 4600-4.
  • 71 Shankar R, DeLaMotte CA, DiCorleto PE. Thrombin stimulates PDGF production and monocyte adhesion through distinct intracellular pathways in human endothelial cells. Am J Physiol 1992; 262: C199-C206.
  • 72 Imanishi T, Han DKM, Hofstra L, Liles WC, Karsan A, Wright ME. et al. Apoptosis of Vascular Smooth Muscle Cells is Induced by Fas Ligand Derived from Monocytes/Macrophage. 2000
  • 73 Hofstra L, Han DK, Liles WC, Kiener PA, Wright M, Polinsky P, Wellens HJJ, Schwartz SM. Monocyte induced apoptosis of vascular smooth muscle cells is mediated by Fas ligand: Implications for the atherosclerotic plaque. (In preparation) 1997
  • 74 Kiener PA, Davis PM, Starling GC, Mehlin C, Klebanoff SJ, Ledbetter JA, Liles WC. Differential induction of apoptosis by Fas-Fas ligand interactions in human monocytes and macrophages. J Exp Med 1997; 185: 1511-6.
  • 75 Liles WC, Kiener PA, Ledbetter JA, Aruffo A, Klebanoff SJ. Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: Implications for the regulation of apoptosis in neutrophils. J Exp Med 1996; 184: 429-40.
  • 76 Mannucci PM. The Rokitanski-Duguid project [letter]. Thromb Haemost 1981; 45: 300.
  • 77 McKee PA, Mattock P, Hill RL. Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin. Proc Natl Acad Sci USA 1970; 66: 738-744.
  • 78 Watt KW, Cottrell BA, Strong DD, Doolittle RF. Amino acid sequence studies on the alpha chain of human fibrinogen. Overlapping sequences providing the complete sequence. Biochem 1979; 18: 5410-6.
  • 79 Watt KW, Takagi T, Doolittle RF. Amino acid sequence of the beta chain of human fibrinogen. Biochem 1979; 18: 68-76.
  • 80 Fowler WE, Erickson HP. Trinodular structure of fibrinogen. Confirmation by both shadowing and negative stain electron microscopy. J Mol Biol 1979; 134: 241-9.
  • 81 Niemetz J. Coagulant activity of leukocytes. Tissue factor activity. J Clin Invest 1972; 51: 307-13.
  • 82 Colucci M, Balconi G, Lorenzet R, Pietra A, Locati D, Donati MB, Semeraro N. Cultured human endothelial cells generate tissue factor in response to endotoxin. J Clin Invest 1983; 71: 1893-6.
  • 83 Morrissey JH, Macik BG, Neuenschwander PF, Comp PC. Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation. Blood 1993; 81: 734-44.
  • 84 Yamamoto M, Nakagaki T, Kisiel W. Tissue factor-dependent autoactivation of human blood coagulation factor VII. J Biol Chem 1992; 267: 19089-94.
  • 85 Jesty J, Spencer AK, Nemerson Y. The mechanism of activation of factor X. Kinetic control of alternative pathways leading to the formation of activated factor X. J Biol Chem 1974; 249: 5614-22.
  • 86 Mann KG, Jenny RJ, Krishnaswamy S. Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Annu Rev Biochem 1988; 57: 915-56.
  • 87 Fowler WE, Hantgan RR, Hermans J, Erickson HP. Structure of the fibrin protofibril. Proc Natl Acad Sci USA 1981; 78: 4872-6.
  • 88 Krakow W, Endres GF, Siegel BM, Scheraga HA. An electron microscopic investigation of the polymerization of bovine fibrin monomer. J Mol Biol 1972; 71: 95-103.
  • 89 Weisel JW, Francis CW, Nagaswami C, Marder VJ. Determination of the topology of factor XIIIa-induced fibrin gamma- chain cross-links by electron microscopy of ligated fragments. J Biol Chem 1993; 268: 26618-24.
  • 90 Pisano JJ, Finlayson JS, Peyton MP. [Cross-link in fibrin polymerized by factor 13: epsilon-(gamma- glutamyl)lysine. Science 1968; 160: 892-3.
  • 91 Ikari Y, Fujikawa K, Yee KO, Schwartz SM. alpha(1)-proteinase inhibitor, alpha(1)-antichymotrypsin, or alpha(2)-macroglobulin is required for vascular smooth muscle cell spreading in three-dimensional fibrin Gel [In Process Citation]. J Biol Chem 2000; 275: 12799-805.
  • 92 Bini A, Fenoglio Jr JJ, Mesa-Tejada R, Kudryk R, Kaplan KL. Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis. Use of monoclonal antibodies. Arteriosclerosis 1989; 9: 109-21.
  • 93 Shekhonin BV, Tararak EM, Samokhin GP, Mitkevich OV, Mazurov AV, Vinogradov DV, Vlasik TN, Kalantarov GF, Koteliansky VE. Visualization of apo B, fibrinogen/fibrin, and fibronectin in the intima of normal human aorta and large arteries and during atherosclerosis. Atherosclerosis 1990; 82: 213-26.
  • 94 Greco C, Di Loreto M, Ciavolella M, Banci M, Taurino M, Cerquetani E, Chiavarelli R, Naro F, Cusella-De Angelis G, Mele A. Immunodetection of human atherosclerotic plaque with 125I-labeled monoclonal antifibrin antibodies. Atherosclerosis 1993; 100: 133-9.
  • 95 Taubman MB, Fallon JT, Schecter AD, Giesen P, Mendlowitz M, Fyfe BS, Marmur JD, Nemerson Y. Tissue factor in the pathogenesis of atherosclerosis. Thromb Haemost 1997; 78: 200-4.
  • 96 Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 1989; 86: 2839-43.
  • 97 Fisher M, Sacoolidge JC, Taylor CR. Patterns of fibrin deposits in carotid artery plaques. Angiology 1987; 38: 393-9.
  • 98 Badimon JJ, Lettino M, Toschi V, Fuster V, Berrozpe M, Chesebro JH, Badimon L. Local inhibition of tissue factor reduces the thrombogenicity of disrupted human atherosclerotic plaques: effects of tissue factor pathway inhibitor on plaque thrombogenicity under flow conditions. Circulation 1999; 99: 1780-7.
  • 99 Caplice NM, Mueske CS, Kleppe LS, Simari RD. Presence of tissue factor pathway inhibitor in human atherosclerotic plaques is associated with reduced tissue factor activity. Circulation 1998; 98: 1051-7.
  • 100 Drew AF, Davenport P, Apostolopoulos J, Tipping PG. Tissue factor pathway inhibitor expression in atherosclerosis. Lab Invest 1997; 77: 291-8.
  • 101 Flynn PD, Byrne CD, Baglin TP, Weissberg PL, Bennett MR. Thrombin generation by apoptotic vascular smooth muscle cells. Blood 1997; 89: 4378-84.
  • 102 Bombeli T, Karsan A, Tait JF, Harlan JM. Apoptotic vascular endothelial cells become procoagulant. Blood 1997; 89: 2429-42.
  • 103 Wolberg AS, Monroe DM, Roberts HR, Hoffman MR. Tissue factor de-encryption: ionophore treatment induces changes in tissue factor activity by phosphatidylserine-dependent and -independent mechanisms. Blood Coagul Fibrinolysis 1999; 10: 201-10.
  • 104 Nieuwland R, Berckmans RJ, Rotteveel-Eijkman RC, Maquelin KN, Roozendaal KJ, Jansen PG, ten Have K, Eijsman L, Hack CE, Sturk A. Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation 1997; 96: 3534-41.
  • 105 Valenzuela R, Shainoff JR, DiBello PM, Urbanic DA, Anderson JM, Matsueda GR, Kudryk BJ. Immunoelectrophoretic and immunohistochemical characterizations of fibrinogen derivatives in atherosclerotic aortic intimas and vascular prosthesis pseudo-intimas. Am J Pathol 1992; 141: 861-80.
  • 106 Arbustini E, Grasso M, Diegoli M, Morbini P, Aguzzi A, Fasani R, Specchia G. Coronary thrombosis in non-cardiac death. Coron Artery Dis 1993; 4: 751-9.
  • 107 Van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology [see comments]. Circulation 1994; 89: 36-44.
  • 108 Farb A, Burke AP, Tang AL, Liang YH, Mannan P, Smialek J, Virmani R. Coronary plaque erosion without rupture into a lipid core: A frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996; 93: 1354-63.
  • 109 Farb A, Tang AL, Burke AP, Sessums L, Liang Y, Virmani R. Sudden coronary death. Frequency of active coronary lesions, inactive coronary lesions, and myocardial infarction. Circulation 1995; 92: 1701-9.
  • 110 Burke AP, Farb A, Liang YH, Smialek J, Virmani R. Effect of hypertension and cardiac hypertrophy on coronary artery morphology in sudden cardiac death. Circulation 1996; 94: 3138-45.
  • 111 Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly [see comments]. N Engl J Med 1997; 336: 1276-82.
  • 112 Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women [see comments]. Circulation 1998; 97: 2110-6.
  • 113 Burke AP, Weber D, Farb A, Kolodgie FD, Malcom GT, Virmani R. Coronary calcification: insights from sudden coronary death victims. J Am Coll Cardiol. In press.
  • 114 Rosenfeld ME, Tsukada T, Chait A, Bierman EL, Gown AM, Ross R. Fatty streak expansion and maturation in Watanabe Heritable Hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 1987; 7: 24-34.
  • 115 Kolodgie FD, Virmani R, Rice HE, Mergner WJ. Vascular reactivity during the progression of atherosclerotic plaque. A study in Watanabe heritable hyperlipidemic rabbits. Circ Res 1990; 66: 1112-26.
  • 116 Davies MJ, Woolf N, Rowles PM, Pepper J. Morphology of the endothelium over atherosclerotic plaques in human coronary arteries. Br Heart J 1988; 60: 459-64.
  • 117 Bylock A, Bondjers G, Jansson I, Hansson HA. Surface ultrastructure of human arteries with special reference to the effects of smoking. Acta Pathol Microbiol Scand [A] 1979; 87A: 201-9.
  • 118 Pittilo RM, Bull HA, Gulati S, Rowles PM, Blow CM, Machin SJ, Woolf N. Nicotine and cigarette smoking: effects on the ultrastructure of aortic endothelium. Int J. Exp Pathol 1990; 71: 573-86.
  • 119 Davies PF, Reidy MA, Goode TB, Bowyer DE. Scanning electron microscopy in the evaluation of endothelial integrity of the fatty lesion in atherosclerosis. Atherosclerosis 1976; 25: 125-30.
  • 120 Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Wong C, Hong MK, Kovach JA, Leon MB. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation 1996; 94: 35-43.
  • 121 Sangiorgi G, Taylor AJ, Farb A, Carter AJ, Edwards WD, Holmes DR, Schwartz RS, Virmani R. Histopathology of postpercutaneous transluminal coronary angioplasty remodeling in human coronary arteries [In Process Citation]. Am Heart J 1999; 138: 681-7.
  • 122 Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316: 1371-5.
  • 123 Katsumata N, Shimokawa H, Seto M, Kozai T, Yamawaki T, Kuwata K, Egashira K, Ikegaki I, Asano T, Sasaki Y, Takeshita A. Enhanced myosin light chain phosphorylations as a central mechanism for coronary artery spasm in a swine model with interleukin-1beta [see comments]. Circulation 1997; 96: 4357-63.
  • 124 Andersen HR, Maeng M, Thorwest M, Falk E. Remodeling rather than neointimal formation explains luminal narrowing after deep vessel wall injury: insights from a porcine coronary (re)stenosis model [see comments]. Circulation 1996; 93: 1716-24.
  • 125 Burke AP, Farb A, Malcom GT, Liang Y, Smialek JE, Virmani R. Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 1999; 281: 921-6.
  • 126 Kragel AH, Reddy SG, Wittes JT, Roberts WC. Morphometric analysis of the composition of atherosclerotic plaques in the four major epicardial coronary arteries in acute myocardial infarction and in sudden coronary death. Circulation 1989; 80: 1747-65.
  • 127 Deitch JS, Williams JK, Adams MR, Fly CA, Herrington DM, Jordan RE, Nakada MT, Jakubowski JA, Geary RL. Effects of beta3-integrin blockade (c7E3) on the response to angioplasty and intra-arterial stenting in athero-sclerotic nonhuman primates. Arterioscler Thromb Vasc Biol 1998; 18: 1730-7.
  • 128 Srivatsa SS, Fitzpatrick LA, Tsao PW, Reilly TM, Holmes Jr DR, Schwartz RS, Mousa SA. Selective alpha v beta 3 integrin blockade potently limits neointimal hyperplasia and lumen stenosis following deep coronary arterial stent injury: evidence for the functional importance of integrin alpha v beta 3 and osteopontin expression during neointima formation. Cardiovasc Res 1997; 36: 408-28.
  • 129 Jang Y, Lincoff AM, Plow EF, Topol EJ. Cell adhesion molecules in coronary artery disease. J Am Coll Cardiol 1994; 24: 1591-601.
  • 130 Choi ET, Engel L, Callow AD, Sun S, Trachtenberg J, Santoro S, Ryan US. Inhibition of neointimal hyperplasia by blocking αvβ3 integrin with a small peptide antagonist GpenGRGDSPCA. J Vasc Surg 1994; 19: 125-34.
  • 131 Hoshiga M, Alpers CE, Smith LL, Giachelli CM, Schwartz SM. v3 integrin expression in normal and atherosclerotic artery. Circ Res 1995; 77: 1129-35.
  • 132 Liaw L, Lombardi DM, Almeida MM, Schwartz SM, de Blois D, Giachelli CM. Neutralizing antibodies directed against osteopontin inhibit rat carotid neointimal thickening following endothelial denudation. Arterioscler Thromb Vasc Biol 1997; 17: 188-93.
  • 133 Stouffer GA, Hu Z, Sajid M, Li H, Jin G, Nakada MT, Hanson SR, Runge MS. Beta3 integrins are upregulated after vascular injury and modulate thrombospondin- and thrombin-induced proliferation of cultured smooth muscle cells. Circulation 1998; 97: 907-15.
  • 134 Matsuno H, Stassen JM, Vermylen J, Deckmyn H. Inhibition of integrin function by a cyclic RGD-containing peptide prevents neointima formation. Circulation 1994; 90: 2203-6.
  • 135 Yee KO, Ikari Y, Bodary S, Schwartz SM. Kistrin inhibits human smooth muscle cell interaction with fibrin. Thromb Res 2000; 97: 39-50.
  • 136 Hedin U, Sjolund M, Hultgardh-Nilsson A, Thyberg J. Changes in expression and organization of smooth muscle-specific alpha-actin during fibronectin-mediated modulation of arterial smooth muscle cell phenotype. Differentiation 1990; 44: 222-31.
  • 137 Thyberg J, Blomgren K, Roy J, Tran PK, Hedin U. Phenotypic modulation of smooth muscle cells after arterial injury is associated with changes in the distribution of laminin and fibronectin. J Histochem Cytochem 1997; 45: 837-46.
  • 138 Koyama H, Raines EW, Bornfeldt KE, Roberts JM, Ross R. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 1996; 87: 1069-78.