Thromb Haemost 1999; 82(02): 755-761
DOI: 10.1055/s-0037-1615908
Research Article
Schattauer GmbH

The Role of Endothelial Cell-to-Cell Junctions in Vascular Morphogenesis

Elisabetta Dejana
1   Vascular Biology Laboratory, Istituto di Ricerche Farmacologiche Mario Negri, Milano, ITALY
,
Gianfranco Bazzoni
1   Vascular Biology Laboratory, Istituto di Ricerche Farmacologiche Mario Negri, Milano, ITALY
,
Maria Grazia Lampugnani
1   Vascular Biology Laboratory, Istituto di Ricerche Farmacologiche Mario Negri, Milano, ITALY
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
09. Dezember 2017 (online)

Introduction

Adhesion of endothelial cells (ECs) to one another and to the extracellular matrix is mediated by various surface receptors These surface receptors belong to several families of ubiquitously expressed cell adhesion molecules, such as cadherins integrins, immunoglobulins, and proteoglycans. Besides merely providing attachment sites, most adhesive receptors interac with cytoskeletal and cytoplasmic molecules and, thus, contribute to the regulation of cell morphology and signaling.

Adhesion requires refined modulation to sustain the process of new vessel formation or angiogenesis. Adjoining cells mus act in concert to finalize migration and proliferation and organize into a three-dimensional network of patent tubes. Some of the molecules involved in these cell-to-extracellular matrix and cell-to-cell interactions have now been characterized. The intracellular signaling pathways activated by these molecules are, on the contrary, still rather obscure. Moreover, the adhesive systems to matrix and neighboring cells can communicate,1-4 adding complexity and coordination to the process.

 
  • References

  • 1 Hodivala KJ, Watt FM. Evidence that cadherins play a role in the downregulation of integrin expression that occurs during keratinocyte terminal differentiation. J Cell Biol 1994; 124: 589-600.
  • 2 Hermiston ML, Gordon JI. In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death. J Cell Biol 1995; 129: 489-506.
  • 3 Finnemann S, Kuhl M, Otto G, Wedlich D. Cadherin transfection of Xenopus XTC cells downregulates expression of substrate adhesion molecules. Mol Cell Biol 1995; 15: 5082-5091.
  • 4 Monier-Gavelle F, Duband JL. Cross talk between adhesion molecules: control of N-cadherin activity by intracellular signals elicited by beta1 and beta3 integrins in migrating neural crest cells. J Cell Biol 1997; 137: 1663-1681.
  • 5 Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84: 345-357.
  • 6 Aberle H, Schwartz H, Kemler R. Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem 1996; 61: 514-523.
  • 7 Anderson JM, Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Pathol 1995; 269: G465-G475.
  • 8 Lampugnani MG, Dejana E. Interendothelial junctions, structure, signalling and functional role. Curr Opin Cell Biol 1997; 9: 674-682.
  • 9 Lampugnani MG, Resnati M, Raiteri M, Pigott R, Pisacane A, Houen G, Ruco L, Dejana E. A novel endothelial-specific membrane protein is a marker of cell–cell contacts. J Cell Biol 1992; 118: 1511-1522.
  • 10 Breier G, Breviario F, Caveda L, Berthier R, Schnurch U, Gotsch D, Vestweber D, Risau W, Dejana E. Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 1996; 87: 630-642.
  • 11 Dejana E. Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest 1996; 98: 1949-1953.
  • 12 Newman PJ, Berndt MC, Gorski J, White GC, Lyman S, Muller WA. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 1990; 247: 1219-1222.
  • 13 Simmons DL, Walker C, Power C, Pigott R. Molecular cloning of CD31, a putative intercellular adhesion molecule closely related to carcinoembryonic antigen. J Exp Med 1990; 171: 2147-2152.
  • 14 Muller WA, Weigl SA, Deng X, Phillips DM. PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 1993; 178: 449-460.
  • 15 Takeichi M. Cadherin in cancer: implications for invasion and metastasis. Curr Opin Cell Biol 1993; 5: 806-811.
  • 16 Huber P, Dalmon J, Engiles J, Breviario F, Gory S, Siracusa LD, Buchberg AM, Dejana E. Genomic structure and chromosomal mapping of the mouse VE-cadherin gene (Cdh5). Genomics 1996; 32: 21-28.
  • 17 Miller JR, Moon RT. Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev 1996; 10: 2527-2539.
  • 18 Hulsken J, Berhens J, Birchmeier W. Tumor-suppressor gene products in cell contacts: the cadherin-APC-armadillo connection. Curr Opin Cell Biol 1994; 6: 711-716.
  • 19 Peifer M. Cell adhesion and signal transduction: the Armadillo connection. Trend Cell Biol 1995; 5: 224-229.
  • 20 Lampugnani MG, Corada M, Andriopoulou P, Esser S, Risau W, Dejana E. Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells. J Cell Sci 1997; 110: 2065-2077.
  • 21 Daniel JM, Reynolds AB. The tyrosine kinase substrate p120cas binds directly to E-cadherin but not to the adenomatous polyposis coli protein or alpha-catenin. Mol Cell Biol 1995; 15: 4819-4824.
  • 22 Kinch MS, Clark GJ, Der CJ, Burridge K. Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia. J Cell Biol 1995; 130: 461-471.
  • 23 Kypta RM, Su H, Reichardt LF. Association between a transmembrane protein tyrosine phosphatase and the cadherin-catenin complex. J Cell Biol 1996; 134: 1519-1529.
  • 24 Balsamo J, Leung T, Ernst H, Zanin MK, Hoffman S, Lilien J. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin. J Cell Biol 1996; 134: 801-813.
  • 25 Fuchs M, Muller T, Lerch MM, Ullrich A. Association of human protein-tyrosine phosphatase kappa with members of the armadillo family. J Biol Chem 1996; 271: 16712-16719.
  • 26 Hoschuetzky H, Aberle H, Kemler R. Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 1994; 127: 1375-1380.
  • 27 Kanai Y, Ochiai A, Shibata T, Oyama T, Ushijima S, Akimoto S, Hirohashi S. c-erbB-2 gene product directly associates with beta-catenin and plakoglobin. Biochem Biophys Res Commun 1995; 208: 1067-1072.
  • 28 Nusse R. A versatile transcriptional effector of Wingless signaling. Cell 1997; 89: 321-323.
  • 29 Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996; 382: 638-642.
  • 30 Molenaar M, van de Wetering M, Oosterwegel M, Peterson Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 1996; 86: 391-399.
  • 31 Brunner E, Peter O, Schweizer L, Basler K. Pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 1997; 385: 829-833.
  • 32 Tao YS, Edwards RA, Tubb B, Wang S, Bryan J, McCrea PD. Beta-catenin associates with the actin-bundling protein fascin in a noncadherin complex. J Cell Biol 1996; 134: 1271-1281.
  • 33 Barth AI, Pollack AL, Altschuler Y, Mostov KE, Nelson WJ. NH2-terminal deletion of beta-catenin results in stable colocalization of mutant beta-catenin with adenomatous polyposis coli protein and altered MDCK cell adhesion. J Cell Biol 1997; 136: 693-706.
  • 34 Orsulic S, Peifer M. An in vivo structure-function study of armadillo, the beta-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling. J Cell Biol 1996; 134: 1283-1300.
  • 35 Watabe M, Nagafuchi A, Tsukita S, Takeichi M. Induction of polarized cell–cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line. J Cell Biol 1994; 127: 247-256.
  • 36 Braga VM, Machesky LM, Hall A, Hotchin NA. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell–cell contacts. J Cell Biol 1997; 137: 1421-1431.
  • 37 Huber O, Bierkamp C, Kemler R. Cadherins and catenins in development. Curr Opin Cell Biol 1996; 8: 685-691.
  • 38 Breviario F, Caveda L, Corada M, Martin-Padura I, Navarro P, Golay J, Introna M, Gulino D, Lampugnani MG, Dejana E. Functional properties of human vascular endothelial cadherin (7B4/cadherin-5) an endothelial specific cadherin. Arterioscler Thromb Vasc Biol 1995; 15: 1229-1239.
  • 39 Caveda L, Martin-Padura I, Navarro P, Breviario F, Corada M, Gulino D, Lampugnani MG, Dejana E. Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin). J Clin Invest 1996; 98: 886-893.
  • 40 Navarro P, Caveda L, Breviario F, Mandoteanu I, Lampugnani MG, Dejana E. Catenin-dependent and -independent functions of vascular endothelial cadherin. J Biol Chem 1995; 270: 30965-30972.
  • 41 Matsumura T, Wolff K, Petzelbauer P. Endothelial cell tube formation depends on cadherin 5 and CD31 interactions with filamentous actin. J Immunol 1997; 158: 3408-3416.
  • 42 Bach TL, Barsigian C, Chalupowicz DG, Busler D, Yaen CH, Grant DS, Martinez J. VE-cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Exp Cell Res 1998; 238: 324-334.
  • 43 Vittet D, Buchou T, Schweitzer A, Dejana E, Huber P. Targeted null-mutation in the vascular endothelial-cadherin gene impairs the organization of vascular-like structures in embryoid bodies. Proc Natl Acad Sci USA 1997; 94: 6273-6278.
  • 44 Esser S, Lampugnani MG, Corada M, Dejana E, Risau W. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 1998; 111: 1853-1865.
  • 45 Martin-Padura I, De Castellarnau C, Uccini S, Pilozzi E, Natali PG, Nicotra MR, Ughi F, Azzolini C, Dejana E, Ruco L. Expression of VE (vascular endothelial)-cadherin and other endothelial-specific markers in haemangiomas. J Pathol 1995; 175: 51-57.
  • 46 Zhou Y, Fisher SJ, Janatpour M, Genbacev O, Dejana E, Wheelock M, Damsky CH. Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion?. J Clin Invest 1997; 99: 2139-2151.
  • 47 Bach TL, Barsigian C, Yaen CH, Martinez J. Endothelial cell VE-cadherin functions as a receptor for the beta 15-42 sequence of fibrin. J Biol Chem 1998; 273: 30719-30728.
  • 48 Heimark RL, Degner M, Schwartz SM. Identification of a Ca2(+)-dependent cell–cell adhesion molecule in endothelial cells. J Cell Biol 1990; 110: 1745-1756.
  • 49 Alexander JS, Blaschuk OW, Haselton FR. An N-cadherin-like protein contributes to solute barrier maintenance in cultured endothelium. J Cell Physiol 1993; 156: 610-618.
  • 50 Liaw CW, Cannon C, Power MD, Kiboneka PK, Rubin LL. Identification and cloning of two species of cadherins in bovine endothelial cells. EMBO J 1990; 9: 2701-2708.
  • 51 Salomon D, Ayalon O, Patel King R, Hynes RO, Geiger B. Extrajunctional distribution of N-cadherin in cultured human endothelial cells. J Cell Sci 1992; 102: 7-17.
  • 52 Rubin LL. Endothelial cells: adhesion and tight junctions. Curr Opin Cell Biol 1992; 4: 830-833.
  • 53 Hatta K, Takagi S, Fujisawa H, Takeichi M. Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol 1987; 120: 215-227.
  • 54 Nose A, Takeichi M. A novel cadherin cell adhesion molecule: its expression patterns associated with implantation and organogenesis of mouse embryos. J Cell Biol 1986; 103: 2649-2658.
  • 55 Larue L, Ohsugi M, Hirchenhain J, Kemler R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci USA 1994; 91: 8263-8267.
  • 56 Risau W. Differentiation of endothelium. FASEB J 1995; 9: 926-933.
  • 57 Radice GL, Ferreira-Cornwell MC, Robinson SD, Rayburn H, Chodosh LA, Takeichi M, Hynes RO. Precocious mammary gland development in P-cadherin-deficient mice. J Cell Biol 1997; 139: 1025-1032.
  • 58 Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO. Developmental defects in mouse embryos lacking N-cadherin. Develop Biol 1997; 181: 64-78.
  • 59 Folkman J, D’Amore PA. Blood vessel formation: what is its molecular basis?. Cell 1996; 87: 1153-1155.
  • 60 Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, Dejana E. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 1995; 129: 203-217.
  • 61 Torres M, Stoykova A, Huber O, Chowdhury K, Bonaldo P, Butz S, Kemler R, Gruss P. An alpha-E-catenin gene trap mutation defines its function in preimplantation development. Proc Natl Acad Sci U S A 1997; 94: 901-906.
  • 62 Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K. Lack of beta-catenin affects mouse development at gastrulation. Development 1995; 121: 3529-3537.
  • 63 Ruiz P, Brinkmann V, Ledermann B, Behrend M, Grund C, Vogel F, Birchmeier C, Gunthert U, Franke WW, Birchmeier W. Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J Cell Biol 1996; 135: 215-225.
  • 64 Pollack AL, Barth AIM, Altschuler Y, Nelson WJ, Mostov KE. Dynamics of beta-catenin interactions with APC protein regulate epithelial tubulogenesis. J Cell Biol 1997; 137: 1651-1662.
  • 65 Newman PJ. The biology of PECAM-1. J Clin Invest 1997; 99: 3-8.
  • 66 DeLisser HM, Christofidou-Solomidou M, Strieter RM, Burdick MD, Robinson CS, Wexler RS, Kerr JS, Garlanda C, Merwin JR, Madri JA, Albelda SM. Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol 1997; 151: 671-677.
  • 67 Lu TT, Yan LG, Madri JA. Integrin engagement mediates tyrosine dephosphorylation on platelet-endothelial cell adhesion molecule 1. Proc Natl Acad Sci USA 1996; 93: 11808-11813.
  • 68 Ayalon O, Sabanai H, Lampugnani MG, Dejana E, Geiger B. Spatial and temporal relationships between cadherins and PECAM-1 in cell–cell junctions of human endothelial cells. J Cell Biol 1994; 126: 247-258.
  • 69 Balda MS, Anderson JM. Two classes of tight junctions are revealed by ZO-1 isoforms. Am J Physiol 1993; 264: C918-C924.
  • 70 Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 1993; 123: 1777-1788.
  • 71 Wong V, Gumbiner BM. A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol 1997; 136: 399-409.
  • 72 Furuse M, Itoh M, Hirase T, Nagasuchi A, Yonemura S, Tsukita S. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junction. J Cell Biol 1994; 127: 1617-1626.
  • 73 Stevenson BR, Siciliano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 1986; 103: 755-766.
  • 74 Anderson JM, Stevenson BR, Jesaitis LA, Goodenough DA, Mooseker MS. Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J Cell Biol 1988; 106: 1141-1149.
  • 75 Itoh M, Yonemura S, Nagafuchi A, Tsukita S. A 220-kD undercoat-constitutive protein: its specific localization at cadherin-based cell-cell adhesion sites. J Cell Biol 1991; 115: 1449-1462.
  • 76 Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 1998; 141: 397-408.
  • 77 Martin-Padura I, Lostaglio S, Schneemann M., Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 1998; 142: 117-127.
  • 78 Furuse M, Sasaki H, Fujimoto K, Tsukita S. A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 1998; 143: 391-401.
  • 79 Morita K, Furuse M, Fujimoto K, Tsukita S. Claudin multigene family encoding four-transmenbrane domain protein components of tight junction strands. Proc Natl Acad Sci USA. 1999 (In press).
  • 80 Fanning A, Jameson BT, Anderson JM. Molecular interactions among the tight junction proteins ZO-1, ZO-2 and occludin. Mol Biol Cell 1996; 7: 3530.
  • 81 Gumbiner B, Lowenkopf T, Apatira D. Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci USA 1991; 88: 3460-3464.
  • 82 Kim SK. Tight junctions, membrane-associated guanylate kinases and cell signaling. Curr Opin Cell Biol 1995; 7: 641-649.
  • 83 Howarth AG, Hughes MR, Stevenson BR. Detection of the tight junction-associated protein ZO-1 in astrocytes and other nonepithelial cell types. Am J Pathol 1992; 262: C461-C469.
  • 84 Rajasekaran AK, Hojo M, Huima T, Rodriguez Boulan E. Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J Cell Biol 1996; 132: 451-463.
  • 85 Citi S, Sabanay H, Jakes R, Geiger B, Kendrick-Jones J. Cingulin, a new peripheral component of tight junctions. Nature 1988; 333: 272-276.
  • 86 Zhong Y, Saitoh T, Minase T, Sawada N, Enomoto K, Mori M. Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1, cingulin and ZO-2. J Cell Biol 1993; 120: 477-483.
  • 87 Keon BH, Schafer SS, Kuhn C, Grund C, Franke WW. Symplekin, a novel type of tight junction plaque protein. J Cell Biol 1996; 134: 1003-1018.
  • 88 McCarthy KM, Skare IB, Stankewich MC, Furuse M, Tsukita S, Rogers RA, Lynch RD, Schneeberger EE. Occludin is a functional component of the tight junction. J Cell Sci 1996; 109: 2287-2298.
  • 89 Staddon JM, Saitou M, Furuse M, Tsukita SH, Rubin LL. Occludin in endothelial cells. Mol Biol Cell 1996; 7: 3520.
  • 90 Li CX, Poznansky MJ. Characterization of the ZO-1 protein in endothelial and other cell lines. J Cell Sci 1990; 97: 231-237.
  • 91 Gardner TW, Lesher T, Khin S, Vu C, Barber AJ, Brennan WA. Histamine reduces ZO-1 tight-junction protein expression in cultured retinal microvascular endothelial cells. Biochem J 1996; 320: 717-721.
  • 92 Staddon JM, Herrenknecht K, Smales C, Rubin LL. Evidence that tyrosine phosphorylation may increase tight junction permeability. J Cell Sci 1995; 108: 609-619.
  • 93 Satoh H, Zhong Y, Isomura H, Saitoh M, Enomoto K, Sawada N, Mori M. Localization of 7H6 tight junction-associated antigen along the cell border of vascular endothelial cells correlates with paracellular barrier function against ions, large molecules, and cancer cells. Exp Cell Res 1996; 222: 269-274.
  • 94 Gottardi CJ, Arpin M, Fanning AS, Louvard D. The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell–cell contacts. Proc Natl Acad Sci USA 1996; 93: 10779-10784.
  • 95 Woods DF, Hough C, Peel D, Callaini G, Bryant PJ. Dlg protein is required for junction structure, cell polarity, and proliferation control in Drosophila epithelia. J Cell Biol 1996; 134: 1469-1482.
  • 96 Van Itallie CM, Balda MS, Anderson JM. Epidermal growth factor induces tyrosine phosphorylation and reorganization of the tight junction protein ZO-1 in A431 cells. J Cell Sci 1995; 108: 1735-1742.
  • 97 Breier G, Risau W. Angiogenesis in the developing brain and in brain tumours. Trends Exp Med 1996; 6: 362-376.