Thromb Haemost 2001; 86(02): 511-516
DOI: 10.1055/s-0037-1616079
Rapid Communication
Schattauer GmbH

A Novel Transgenic Mouse Model of Hyperfibrinogenemia

Alyssa A. Gulledge
1   Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, USA
,
Farhad Rezaee
2   Department of Vascular and Connective Tissue Research, Gaubius Laboratory, TNO-PG, Leiden, The Netherlands
3   Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
,
Jan H. Verheijen
2   Department of Vascular and Connective Tissue Research, Gaubius Laboratory, TNO-PG, Leiden, The Netherlands
,
Susan T. Lord
1   Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, USA
4   Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, USA
› Author Affiliations
Further Information

Publication History

Received 27 October 2000

Accepted after revision 01 March 2001

Publication Date:
12 December 2017 (online)

Summary

Hyperfibrinogenemia is a risk predictor in several diseases, including cardiovascular disease. Nevertheless, it remains unknown whether elevated fibrinogen has an etiologic role in or is a reflection of disease pathogenesis, or both. To examine this question, we generated a mouse model of hyperfibrinogenemia. We isolated the mouse fibrinogen locus, containing the three fibrinogen genes, in a single P1 clone. This ~ 100 kb clone was injected into C57Bl/6J zygotes. Three transgenic lines were identified, two with elevated fibrinogen, 1.4- and 1.7-fold relative to normal. We characterized the line with the higher level. Northern blots of total RNA showed transgene expression was liver specific, and the message levels were 2- to 3-fold enhanced. Fibrinogen in transgenic mice was normal in both immunologic and clotting assays. Our data indicate that over-expression of all three fibrinogen genes is necessary to achieve hyperfibrinogenemia. We saw no increase in mortality or morbidity, no gross abnormalities in the organs, and no histologic differences in lung, liver, spleen or kidney, in transgenic mice relative to normal littermates. We conclude that elevated fibrinogen did not cause disease in mice. We anticipate that breeding these mice to other mouse models of disease will demonstrate whether hyper-fibrinogenemia has a role in the initiation or progression of symptomatic disease.

 
  • References

  • 1 Cortellaro M. et al. The PLAT Study: hemostatic function in relation to atherothrombotic ischemic events in vascular disease patients. Principal results. PLAT Study Group. Progetto Lombardo Atero-Trombosi (PLAT) Study Group. Arterioscler Thromb 1992; 12 (Suppl. 09) 1063-70.
  • 2 Cremer P, Nagel D, Mann H, Labrot B, Muller-Berninger R, Elster H, Seidel D. Ten-year follow-up results from the Goettingen Risk, Incidence and Prevalence Study (GRIPS). I. Risk factors for myocardial infarction in a cohort of 5790 men. Atherosclerosis 1997; 129 (Suppl. 02) 221-30.
  • 3 Sweetnam PM, Thomas HF, Yarnell JW, Beswick AD, Baker IA, Elwood PC. Fibrinogen, viscosity and the 10-year incidence of ischaemic heart disease. Eur Heart J 1996; 17 (Suppl. 12) 1814-20.
  • 4 Kannel WB, D’Agostino RB, Belanger AJ. Update on fibrinogen as a cardiovascular risk factor. Ann Epidemiol 1992; 2 (Suppl. 04) 457-66.
  • 5 Ernst E, Resch KL. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Ann Intern Med 1993; 118 (Suppl. 12) 956-63.
  • 6 Folsom AR. Epidemiology of fibrinogen. Eur Heart J 1995; 16 (suppl A): 21-3.
  • 7 Ganda OP, Arkin CF. Hyperfibrinogenemia. An important risk factor for vascular complications in diabetes. Diabetes Care 1992; 15 (Suppl. 10) 1245-50.
  • 8 Myrup B, de Maat M, Rossing P, Gram J, Kluft C, Jespersen J. Elevated fibrinogen and the relation to acute phase response in diabetic nephropathy. Thromb Res 1996; 81 (Suppl. 04) 485-90.
  • 9 Imperatore G, Riccardi G, Iovine C, Rivellese AA, Vaccaro O. Plasma fibrinogen: a new factor of the metabolic syndrome. A population-based study. Diabetes Care 1998; 21 (Suppl. 04) 649-54.
  • 10 de Sain-van der Velden MG, Kaysen GA, de Meer K, Stellaard F, Voorbij HA, Reijngoud DJ, Rabelink TJ, Koomans HA. Proportionate increase of fibrinogen and albumin synthesis in nephrotic patients: measurements with stable isotopes. Kidney Int 1998; 53 (Suppl. 01) 181-8.
  • 11 Brugarolas A, Elias EG. Incidence of hyperfibrinogenemia in 1961 patients with cancer. J Surg Oncol 1973; 5 (Suppl. 04) 359-64.
  • 12 Crabtree GR, Comeau CM, Fowlkes DM, Fornace Jr AJ, Malley JD, Kant JA. Evolution and structure of the fibrinogen genes. Random insertion of introns or selective loss? J Mol Biol 1985; 185 (Suppl. 01) 1-19.
  • 13 Kant JA, Fornace Jr AJ, Saxe D, Simon MI, McBride OW, Crabtree GR. Evolution and organization of the fibrinogen locus on chromosome 4: gene duplication accompanied by transposition and inversion. Proc Natl Acad Sci USA 1985; 82 (Suppl. 08) 2344-8.
  • 14 Hu CH, Harris JE, Davie EW, Chung DW. Characterization of the 5′-flanking region of the gene for the alpha chain of human fibrinogen. J Biol Chem 1995; 270 (Suppl. 47) 28342-9.
  • 15 Zhang Z, Fuentes NL, Fuller GM. Characterization of the IL-6 responsive elements in the gamma fibrinogen gene promoter. J Biol Chem 1995; 270 (Suppl. 41) 24287-91.
  • 16 Mizuguchi J, Hu CH, Cao Z, Loeb KR, Chung DW, Davie EW. Characterization of the 5′-flanking region of the gene for the gamma chain of human fibrinogen. J Biol Chem 1995; 270 (Suppl. 47) 28350-6.
  • 17 Anderson GM, Shaw AR, Shafer JA. Functional characterization of promoter elements involved in regulation of human B beta-fibrinogen expression. Evidence for binding of novel activator and repressor proteins. J BiolChem 1993; 268 (Suppl. 30) 22650-5.
  • 18 Crabtree GR, Kant JA. Coordinate accumulation of the mRNAs for the alpha, beta, and gamma chains of rat fibrinogen following defibrination. J Biol Chem 1982; 257 (Suppl. 13) 7277-9.
  • 19 Amrani DL. Regulation of fibrinogen biosynthesis: glucocorticoid and interleukin-6 control. Blood Coagul Fibrinolysis 1990; 1 (4-5): 443-6.
  • 20 Castell JV, Gomez-Lechon MJ, David M, Fabra R, Trullenque R, Heinrich PC. Acute-phase response of human hepatocytes: regulation of acute-phase protein synthesis by interleukin-6. Hepatology 1990; 12 (Suppl. 05) 1179-86.
  • 21 Bolyard MG, Lord ST. High-level expression of a functional human fibrinogen gamma chain in Escherichia coli. Gene 1988; 66 (Suppl. 02) 183-92.
  • 22 Strauss WM. Preparation of Genomic DNA from Mammalian Tissue. In: Current Protocols in Molecular Biology. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. (eds.) New York: Greene Pub. Associates and Wiley-Interscience, NY; 1987. Vol. I. pp 2.2.1-2.
  • 23 Kockx M, Gervois PP, Poulain P, Derudas B, Peters JM, Gonzalez FJ, Princen HM, Kooistra T, Staels B. Fibrates suppress fibrinogen gene expression in rodents via activation of the peroxisome proliferator-activated receptor-alpha. Blood 1999; 93 (Suppl. 09) 2991-8.
  • 24 Fort P, Marty L, Piechaczyk M, el Sabrouty S, Dani C, Jeanteur P, Blanchard JM. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nuc Acids Res 1985; 13 (Suppl. 05) 1431-42.
  • 25 Hornbeck P. Enzyme-Linked Immuosorbent Assays (ELISA). In: Current Protocols in Molecular Biology. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. (eds.) New York: Greene Pub. Associates and Wiley-Interscience, NY; 1987. Vol. II: pp 11.2.8-10.
  • 26 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680-5.
  • 27 Csiza CK, McMartin DN. Apparent acaridal dermatitis in a C57BL/6 Nya mouse colony. Lab Animal Sci 1976; 26: 781-7.
  • 28 Chada K, Magram J, Costantini F. Tissue- and stage-specific expression of a cloned adult beta globin gene in transgenic mice. Prog Clin Biol Res 1985; 191: 305-19.
  • 29 Townes TM, Lingrel JB, Chen HY, Brinster RL, Palmiter RD. Erythroid-specific expression of human beta-globin genes in transgenic mice. EMBO J 1985; 4 (Suppl. 07) 1715-23.
  • 30 Rezaee F, Maas A, Verheijen J, Koopman J. Generation and characterization of transgenic mice with overexpression of fibrinogen Bβ-chain and mRNA. Thromb Haemost 1999; Suppl 424.
  • 31 Jelic-Ivanovic Z, Pevcevic N. Fibrinogen determination by five methods in patients receiving streptokinase therapy. Clin Chem 1990; 36 (Suppl. 04) 698-9.
  • 32 Halbmayer WM, Haushofer A, Schon R, Radek J, Fischer M. Comparison of a new automated kinetically determined fibrinogen assay with the 3 most used fibrinogen assays (functional, derived and nephelometric) in Austrian laboratories in several clinical populations and healthy controls. Haemostasis 1995; 25 (Suppl. 03) 114-23.
  • 33 Tan V, Doyle CJ, Budzynski AZ. Comparison of the kinetic fibrinogen assay with the von Clauss method and the clot recovery method in plasma of patients with conditions affecting fibrinogen coagulability. Am J Clin Path 1995; 104 (Suppl. 04) 455-62.
  • 34 Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 1992; 71 (Suppl. 02) 343-53.
  • 35 Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992; 258 (suppl. 5081): 468-71.
  • 36 Thomas HE, Kay TW. Beta cell destruction in the development of autoimmune diabetes in the non-obese diabetic (NOD) mouse. Diabetes Metab Rev 2000; 16 (Suppl. 04) 251-61.