Thromb Haemost 2001; 86(02): 630-635
DOI: 10.1055/s-0037-1616097
Review Article
Schattauer GmbH

Selection of Phages that Inhibit vWF Interaction with Collagen under both Static and Flow Conditions

H. Ulrichts
1   Laboratory for Thrombosis Research, IRC, KU Leuven Campus Kortrijk, Belgium; Department of Clinical Chemistry, University of Debrecen Medical School, Debrecen, Hungary
,
H. Depraetere
1   Laboratory for Thrombosis Research, IRC, KU Leuven Campus Kortrijk, Belgium; Department of Clinical Chemistry, University of Debrecen Medical School, Debrecen, Hungary
,
J. Harsfalvi
1   Laboratory for Thrombosis Research, IRC, KU Leuven Campus Kortrijk, Belgium; Department of Clinical Chemistry, University of Debrecen Medical School, Debrecen, Hungary
,
H. Deckmyn
1   Laboratory for Thrombosis Research, IRC, KU Leuven Campus Kortrijk, Belgium; Department of Clinical Chemistry, University of Debrecen Medical School, Debrecen, Hungary
› Author Affiliations
Further Information

Publication History

Received 07 August 2000

Accepted after resubmission 27 February 2001

Publication Date:
12 December 2017 (online)

Summary

Phages from a pentadecamer phage display library were selected for binding to vWF by affinity panning. Bound phages were selectively eluted with human collagen type I. After the third round of panning 95% of individual phage clones bound to vWF. The B8-phage inhibited the binding of collagen to vWF with an IC50 of 0.6 × 1010 phages/ml, and of vWF to collagen with an IC50 of 1.0 × 1010 phages/ml at 0.5 μg/ml vWF. Under flow conditions, 1.5 × 1011 B8-phage/ml nearly completely inhibited platelet deposition on a human collagen type I coated surface at a shear rate of 1200 s-1, while phages without an insert had no effect. The peptide corresponding to the one displayed on the B8-phage competed with the phage for binding to vWF with an IC50 of 30 μg/ml (16 μM). The peptide furthermore inhibited vWF-binding to collagen with a maximum of 40% at a concentration of 1.25 mg/ml (650 μM), higher concentrations of peptide could not improve this. We thus have selected phages that are potent vWF-binders and that can be used as tools to detect vWF, to inhibit vWF-collagen interaction and to further analyse the role of vWF-collagen binding.

 
  • References

  • 1 Santoro SA. Identification of a 160,000 dalton platelet membrane protein that mediates the initial divalent cation-dependent adhesion of platelets to collagen. Cell 1986; 46: 913-20.
  • 2 Nieuwenhuis HK, Akkerman JW, Houdijk WP, Sixma JJ. Human blood platelets showing no response to collagen fail to express surface glycoprotein Ia. Nature 1985; 318: 470-2.
  • 3 Beer JH, Rabaglio M, Berchtold P, von Felten A, Clemetson KJ, Tsakiris DA, Kehrel B, Brandenberger S. Autoantibodies against the platelet glyco-proteins (GP) IIb/IIIa, Ia/IIa, and IV and partial deficiency in GPIV in a patient with a bleeding disorder and a defective platelet collagen interaction. Blood 1993; 82: 820-9.
  • 4 Arai M, Yamamoto N, Moroi M, Akamatsu N, Fukutake K, Tanoue K. Platelets with 10% of the normal amount of glycoprotein VI have an impaired response to collagen that results in a mild bleeding tendency. Br J Haematol 1995; 89: 124-30.
  • 5 Clemetson JM, Polgar J, Magnenat E, Wells TN, Clemetson KJ. The platelet collagen receptor glycoprotein VI is a member of the immunoglobulin superfamily closely related to FcalphaR and the natural killer receptors. J Biol Chem 1999; 274: 29019-24.
  • 6 Sixma JJ. Platelet adhesion in health and disease. in Verstraete M, Vermylen J, Lijnen HR, Arnout J. (eds) Thrombosis and Haemostasis. Leuven, Belgium: Leuven University Press; 1987: 127-46.
  • 7 Sixma JJ, de Groot PG. von Willebrand factor and the blood vessel wall. Mayo Clin Proc 1991; 66: 628-33.
  • 8 Goto S, Salomon DR, Ikeda Y, Ruggeri ZM. Characterization of the unique mechanism mediating the shear-dependent binding of soluble von Wille-brand factor to platelets. J Biol Chem 1995; 270: 23352-61.
  • 9 Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998; 94: 657-666.
  • 10 Moroi M, Jung SM, Nomura S, Sekiguchi S, Ordinas A, Diaz-Ricart M. Analysis of the involvement of the von Willebrand factor-glycoprotein Ib interaction in platelet adhesion to a collagen-coated surface under flow conditions. Blood. 1997; 90: 4413-24.
  • 11 Kehrel B, Wierwille S, Clemetson KJ, Anders O, Steiner M, Knight CG, Farndale RW, Okuma M, Barnes MJ. Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood 1998; 91: 491-9.
  • 12 Santoro SA, Zutter MM. The alpha 2 beta 1 integrin: a collagen receptor on platelets and other cells. Thromb Haemost 1995; 74: 813-21.
  • 13 Kamata T, Puzon W, Takada Y. Identification of putative ligand binding sites within I domain of integrin alpha 2 beta 1 (VLA-2, CD49b/CD29). J Biol Chem 1994; 269: 9659-63.
  • 14 Kamata T, Takada Y. Direct binding of collagen to the I domain of integrin alpha 2 beta 1 (VLA-2, CD49b/CD29) in a divalent cation-independent manner. J Biol Chem 1994; 269: 26006-10.
  • 15 Bahou WF, Potter CL, Mirza H. The VLA-2 (alpha 2 beta 1) I domain functions as a ligand-specific recognition sequence for endothelial cell attachment and spreading: molecular and functional characterization. Blood 1994; 84: 3734-41.
  • 16 Depraetere H, Wille C, Gansemans Y, Stanssens P, Lauwereys M, Baruch D, De Reys S, Deckmyn H. The integrin alpha 2 beta 1 (GPIa/IIa)-I-domain inhibits platelet-collagen interaction. Thromb Haemost 1997; 77: 981-5.
  • 17 Colombatti A, Bonaldo P. The superfamily of proteins with von Willebrand factor type A-like domains: one theme common to components of extracellular matrix, hemostasis, cellular adhesion, and defense mechanisms. Blood 1991; 77: 2305-15.
  • 18 Lankhof H, van Hoeij M, Schiphorst ME, Bracke M, Wu YP, Ijsseldijk MJ, Vink T, de Groot PG, Sixma JJ. A3 domain is essential for interaction of von Willebrand factor with collagen type III. Thromb Haemost 1996; 75: 950-8.
  • 19 Mohri H, Zimmerman TS, Ruggeri ZM. Synthetic peptides inhibit the interaction of von Willebrand factor-platelet membrane glycoproteins. Peptides 1993; 14: 125-9.
  • 20 Sixma JJ, Schiphorst ME, Verweij CL, Pannekoek H. Effect of deletion of the A1 domain of von Willebrand factor on its binding to heparin, collagen and platelets in the presence of ristocetin. Eur J Biochem 1991; 196: 369-75.
  • 21 Christophe O, Obert B, Meyer D, Girma JP. The binding domain of von Willebrand factor to sulfatides is distinct from those interacting with glyco-protein Ib, heparin, and collagen and resides between amino acid residues Leu 512 and Lys 673. Blood 1991; 78: 2310-7.
  • 22 Sobel M, Soler DF, Kermode JC, Harris RB. Localization and characterization of a heparin binding domain peptide of human von Willebrand factor. J Biol Chem 1992; 267: 8857-62.
  • 23 Hoylaerts MF, Yamamoto H, Nuyts K, Vreys I, Deckmyn H, Vermylen J. von Willebrand factor binds to native collagen VI primarily via its A1 domain. Biochem J 1997; 324: 185-91.
  • 24 Mazzucato M, Spessotto P, Masotti A, De Appollonia L, Cozzi MR, Yoshioka A, Perris R, Colombatti A, De Marco LJ. Identification of domains responsible for von Willebrand factor type VI collagen interaction mediating platelet adhesion under high flow. J Biol Chem 1999; 274: 3033-41.
  • 25 Lankhof H, Damas C, Schiphorst ME, Ijsseldijk MJ, Bracke M, Furlan M, Tsai HM, de Groot PG, Sixma JJ, Vink T. von Willebrand factor without the A2 domain is resistant to proteolysis. Thromb Haemost 1997; 77: 1008-13.
  • 26 Cruz MA, Yuan H, Lee JR, Wise RJ, Handin RI. Interaction of the von Willebrand Factor (vWF) with Collagen. J Biol Chem 1995; 270: 10822-7.
  • 27 Verkleij MW, IJsseldijk MJ, Heijnen-Snyder GJ, Huizinga EG, Morton LF, Knight CG, Sixma JJ, de Groot PG, Barnes MJ. Adhesive domains in the collagen III fragment alpha1(III)CB4 that support alpha2beta1- and von Willebrand factor-mediated platelet adhesion under flow conditions. Thromb Haemost 1999; 82: 1137-44.
  • 28 Schaffer LW, Davidson JT, Siegl PK, Gould RJ, Nutt RF, Brady SF, Connolly TM. Recombinant leech antiplatelet protein prevents collagen-mediated platelet aggregation but not collagen graft thrombosis in baboons. Arterioscler Thromb 1993; 13: 1593-601.
  • 29 van Zanten GH, Connolly TM, Schiphorst ME, de Graaf S, Slootweg PJ, Sixma JJ. Recombinant leech antiplatelet protein specifically blocks platelet deposition on collagen surfaces under flow conditions. Arterioscler Thromb Vasc Biol 1995; 15: 1424-31.
  • 30 Deckmyn H, Stassen JM, Vreys I, Van Houtte E, Sawyer RT, Vermylen J. Calin from Hirudo medicinalis, an inhibitor of platelet adhesion to collagen, prevents platelet-rich thrombosis in hamsters. Blood 1995; 85: 712-9.
  • 31 Harsfalvi J, Stassen JM, Hoylaerts MF, Van Houtte E, Sawyer RT, Vermylen J, Deckmyn H. Calin from Hirudo medicinalis, an inhibitor of von Willebrand factor binding to collagen under static and flow conditions. Blood 1995; 85: 705-11.
  • 32 Depraetere H, Kerekes A, Deckmyn H. The collagen-binding leech products rLAPP and calin prevent both von Willebrand factor and alpha2-beta1(GPIa/IIa)-I-domain binding to collagen in a different manner. Thromb Haemost 1999; 82: 1160-3.
  • 33 Depraetere H, Viaene A, Deroo S, Vauterin S, Deckmyn H. Identification of peptides, selected by phage display technology, that inhibit von Wille-brand Factor binding to collagen. Blood 1998; 92: 4207-11.
  • 34 Vanhoorelbeke K, van der Plas RM, Vandecasteele G, Vauterin S, Huizinga EG, Sixma JJ, Deckmyn H. Sequence alignment between vWF and peptides inhibiting the vWF-collagen interaction does not result in the identification of a collagen-binding site in vWF. Thromb Haemost 2000; 84: 621-5.
  • 35 Vanhoorelbeke K, Cauwenberghs N, Vauterin S, Schlammadinger A, Mazurier C, Deckmyn H. A new and reproducible vWF-RiCof assay. Thromb Haemost 2000; 83: 107-13.