Thromb Haemost 2001; 86(01): 246-258
DOI: 10.1055/s-0037-1616222
Research Article
Schattauer GmbH

β3 Tyrosine Phosphorylation in αIIbβ3 (Platelet Membrane GP IIb-IIIa) Outside-in Integrin Signaling

David R. Phillips
1   COR Therapeutics, Inc. E. Grand Ave. South San Francisco, CA, USA
,
Lisa Nannizzi-Alaimo
1   COR Therapeutics, Inc. E. Grand Ave. South San Francisco, CA, USA
,
K. S. Srinivasa Prasad
1   COR Therapeutics, Inc. E. Grand Ave. South San Francisco, CA, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
12 December 2017 (online)

Summary

The platelet integrin αIIbβ3 not only binds fibrinogen and von Willebrand factor to mediate platelet aggregation and adhesion, it also serves as a signaling receptor. Platelet agonists such as ADP, thrombin and collagen induce “inside-out” signaling which activates the receptor function of αIIbβ3 for soluble fibrinogen. Subsequent platelet aggregation leads to “outside-in” signaling, inducing platelet aggregate stabilization and triggering a variety of functions important to platelet physiology. This review focuses on the role of β3 tyrosine phosphorylation in αIIbβ3 outside-in signaling. Tyrosine phosphorylation of β3 in platelets is a dynamic process which is initiated upon platelet aggregation and also by adhesion of platelets to immobilized fibrinogen. Tyrosine phosphorylation occurs on the β3 integrin cytoplasmic tyrosine (ICY) domain, a conserved motif found in thesubunits of several integrins. β3 ICY domain tyrosine phosphorylation induces the recruitment of two proteins to the cytoplasmic domains of αIIbβ3: the cytoskeletal protein myosin, important to clot retraction; and the signaling adapter protein Shc, important to platelet stimulation. The critical role of β3 tyrosine phosphorylation to platelet function was established by the diYF mouse, a novel strain which expresses an αIIbβ3 in which the two β3 ICY domain tyrosines have been mutated to phenylalanine. These mice are selectively impaired in outside-in αIIbβ3 signaling, with defective aggregation and clot-retraction responses in vitro, and an in vivo bleeding defect which is characterized by a pronounced tendency to rebleed. Taken together, the data suggest that the β3 tyrosine phosphorylation signaling mechanism is important to αIIbβ3 function and might be applicable to a wide variety of integrin-mediated events.

 
  • References

  • 1 Calvete JJ. Platelet integrin GPIIb/IIIa: structure-function correlations. An update and lessons from other integrins. Proc Soc Exp Biol Med 1999; 222: 29-38.
  • 2 Shattil SJ, Ginsberg MH. Integrin signaling in vascular biology. J Clin Invest 1997; 100 (Suppl. 11) S91-5.
  • 3 Shattil SJ, Kashiwagi H, Pampori N. Integrin signaling: the platelet paradigm. Blood 1998; 91: 2645-57.
  • 4 Shattil SJ. Signaling through platelet integrin alphaIIbbeta3: inside-out, outside-in, and sideways. Thromb Haemost 1999; 82: 318-25.
  • 5 Lin EC, Ratnikov BI, Tsai PM, Gonzalez ER, McDonald S, Pelletier AJ. et al. Evidence that the integrin beta3 and beta5 subunits contain a metal ion-dependent adhesion site-like motif but lack an I domain. J Biol Chem 1997; 272: 14236-43.
  • 6 Loftus JC, Smith JW, Ginsberg MH. Integrin-mediated cell adhesion: the extracellular face. J Biol Chem 1994; 269: 25235-8.
  • 7 Pabla R, Weyrich AS, Dixon DA, Bray PF, McIntyre TM, Prescott SM. et al. Integrin-dependent control of translation: engagement of integrin alphaIIbbeta3 regulates synthesis of proteins in activated human platelets. J Cell Biol 1999; 144: 175-84.
  • 8 Law DA, DeGuzman FR, Heiser P, Ministri-Madrid K, Killeen N, Phillips DR. Integrin cytoplasmic tyrosine motif is required for outside-in alphaIIbbeta3 signalling and platelet function. Nature 1999; 401: 808-11.
  • 9 Law DA, Nannizzi-Alaimo L, Phillips DR. Outside-in integrin signal transduction. AlphaIIbbeta3 (GP IIb-IIIa) tyrosine phosphorylation induced by platelet aggregation. J Biol Chem 1996; 271: 10811-5.
  • 10 Cowan KJ, Law DA, Phillips DR. Identification of Shc as the primary protein binding to the tyrosine-phosphorylated beta3 subunit of alphaIIbbeta3 during outside-in integrin platelet signaling. J Biol Chem 2000; 275: 36423-9.
  • 11 Jenkins AL, Nannizzi-Alaimo L, Silver D, Sellers JR, Ginsberg MH, Law DA. et al. Tyrosine phosphorylation of the beta3 cytoplasmic domain mediates integrin-cytoskeletal interactions. J Biol Chem 1998; 273: 13878-85.
  • 12 Chen YP, Djaffar I, Pidard D, Steiner B, Cieutat AM, Caen JP. et al. Ser-752→Pro mutation in the cytoplasmic domain of integrin beta3 subunit and defective activation of platelet integrin alphaIIbbeta3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc Natl Acad Sci USA 1992; 89: 10169-73.
  • 13 Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11-25.
  • 14 Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem 2000; 275: 21785-8.
  • 15 Vinogradova O, Haas T, Plow EF, Qin J. A structural basis for integrin activation by the cytoplasmic tail of the alphaIIb-subunit. Proc Natl Acad Sci USA 2000; 97: 1450-5.
  • 16 Hwang PM, Vogel HJ. Structures of the platelet calcium- and integrin-binding protein and the alphaIIb-integrin cytoplasmic domain suggest a mechanism for calcium-regulated recognition; homology modelling and NMR studies. J Mol Recognit 2000; 13: 83-92.
  • 17 Hughes PE, Diaz-Gonzalez F, Leong L, Wu C, McDonald JA, Shattil SJ. et al. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem 1996; 271: 6571-4.
  • 18 Shiba E, Lindon JN, Kushner L, Matsueda GR, Hawiger J, Kloczewiak M. et al. Antibody-detectable changes in fibrinogen adsorption affecting platelet activation on polymer surfaces. Am J Physiol 1991; 260: 965-74.
  • 19 Gawaz MP, Loftus JC, Bajt ML, Frojmovic MM, Plow EF, Ginsberg MH. Ligand bridging mediates integrin alphaIIbbeta3 (platelet GPIIa-IIIa) dependent homotypic and heterotypic cell-cell interactions. J Clin Invest 1991; 88: 1128-34.
  • 20 Kouns WC, Wall CD, White MM, Fox CF, Jennings LK. A conformation-dependent epitope of human platelet glycoprotein IIIa. J Biol Chem 1990; 265: 20594-601.
  • 21 Frelinger ALd, Lam SC, Plow EF, Smith MA, Loftus JC, Ginsberg MH. Occupancy of an adhesive glycoprotein receptor modulates expression of an antigenic site involved in cell adhesion. J Biol Chem 1988; 263: 12397-402.
  • 22 Leisner TM, Wencel-Drake JD, Wang W, Lam SC. Bidirectional trans-membrane modulation of integrin alphaIIbbeta3 conformations. J Biol Chem 1999; 274: 12945-9.
  • 23 Phillips DR, Charo IF, Scarborough RM. GPIIb-IIIa: the responsive integrin. Cell 1991; 65: 359-62.
  • 24 Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990; 61: 203-12.
  • 25 Fantl WJ, Johnson DE, Williams LT. Signalling by receptor tyrosine kinases. Annu Rev Biochem 1993; 62: 453-81.
  • 26 Parise LV, Criss AB, Nannizzi L, Wardell MR. Glycoprotein IIIa is phosphorylated in intact human platelets. Blood 1990; 75: 2363-8.
  • 27 Hillery CA, Smyth SS, Parise LV. Phosphorylation of human platelet glycoprotein IIIa (GPIIIa). Dissociation from fibrinogen receptor activation and phosphorylation of GPIIIa in vitro. J Biol Chem 1991; 266: 14663-9.
  • 28 Hirst R, Horwitz A, Buck C, Rohrschneider L. Phosphorylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases. Proc Natl Acad Sci USA 1986; 83: 6470-4.
  • 29 Johansson MW, Larsson E, Luning B, Pasquale EB, Ruoslahti E. Altered localization and cytoplasmic domain-binding properties of tyrosine-phosphorylated beta1 integrin. J Cell Biol 1994; 126: 1299-309.
  • 30 Mainiero F, Murgia C, Wary KK, Curatola AM, Pepe A, Blumemberg M. et al. The coupling of alpha6beta4 integrin to Ras-MAP kinase pathways mediated by Shc controls keratinocyte proliferation. Embo J 1997; 16: 2365-75.
  • 31 Tamkun JW, DeSimone DW, Fonda D, Patel RS, Buck C, Horwitz AF. et al. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 1986; 46: 271-82.
  • 32 vander Geer P, Pawson T. The PTB domain: a new protein module implicated in signal transduction. Trends Biochem Sci 1995; 20: 277-80.
  • 33 Songyang Z, Gish G, Mbamalu G, Pawson T, Cantley LC. A single point mutation switches the specificity of group III Src homology (SH)2 domains to that of group I SH2 domains. J Biol Chem 1995; 270: 26029-32.
  • 34 Iwashima M, Irving BA, van Oers NS, Chan AC, Weiss A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 1994; 263: 1136-9.
  • 35 Williams MJ, Du X, Loftus JC, Ginsberg MH. Platelet adhesion receptors. Semin Cell Biol 1995; 6: 305-14.
  • 36 Irani K, Pham Y, Coleman LD, Roos C, Cooke GE, Miodovnik A. et al. Priming of platelet alphaIIbbeta3 by oxidants is associated with tyrosine phosphorylation of beta3. Arterioscler Thromb Vasc Biol 1998; 18: 1698-706.
  • 37 Guinto ER, Caccia S, Rose T, Futterer K, Waksman G, Di Cera E. Unexpected crucial role of residue 225 in serine proteases. Proc Natl Acad Sci USA 1999; 96: 1852-7.
  • 38 Filardo EJ, Brooks PC, Deming SL, Damsky C, Cheresh DA. Requirement of the NPXY motif in the integrin beta3 subunit cytoplasmic tail for melanoma cell migration in vitro and in vivo. J Cell Biol 1995; 130: 441-50.
  • 39 Romzek NC, Harris ES, Dell CL, Skronek J, Hasse E, Reynolds PJ. et al. Use of a beta1 integrin-deficient human T cell to identify beta1 integrin cytoplasmic domain sequences critical for integrin function. Mol Biol Cell 1998; 9: 2715-27.
  • 40 Hodivala-Dilke KM, McHugh KP, Tsakiris DA, Rayburn H, Crowley D, Ullman-Cullere M. et al. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 1999; 103: 229-38.
  • 41 Liu S, Calderwood DA, Ginsberg MH. Integrin cytoplasmic domain-binding proteins. J Cell Sci 2000; 113: 3563-71.
  • 42 Shattil SJ, O’Toole T, Eigenthaler M, Thon V, Williams M, Babior BM. et al. Beta3-endonexin, a novel polypeptide that interacts specifically with the cytoplasmic tail of the integrin beta3 subunit. J Cell Biol 1995; 131: 807-16.
  • 43 Eigenthaler M, Hofferer L, Shattil SJ, Ginsberg MH. A conserved sequence motif in the integrin beta3 cytoplasmic domain is required for its specific interaction with beta3-endonexin. J Biol Chem 1997; 272: 7693-8.
  • 44 Naik UP, Patel PM, Parise LV. Identification of a novel calcium-binding protein that interacts with the integrin alphaIIb cytoplasmic domain. J Biol Chem 1997; 272: 4651-4.
  • 45 Shock DD, Naik UP, Brittain JE, Alahari SK, Sondek J, Parise LV. Calcium-dependent properties of CIB binding to the integrin alphaIIb cytoplasmic domain and translocation to the platelet cytoskeleton. Biochem J 1999; 342: 729-35.
  • 46 Knezevic I, Leisner TM, Lam SCT. Direct binding of the platelet integrin alphaIIbbeta3 (GPIIb-IIIa) to talin. Evidence that interaction is mediated through the cytoplasmic domains of both alphaIIb and beta3. J Biol Chem 1996; 271: 16416-21.
  • 47 Calderwood DA, Zent R, Grant R, Rees DJ, Hynes RO, Ginsberg MH. The talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. J Biol Chem 1999; 274: 28071-4.
  • 48 Lindberg FP, Lublin DM, Telen MJ, Veile RA, Miller YE, Donis-Keller H. et al. Rh-related antigen CD47 is the signal-transducer integrin-associated protein. J Biol Chem 1994; 269: 1567-70.
  • 49 Chung J, Gao AG, Frazier WA. Thrombspondin acts via integrin-associated protein to activate the platelet integrin alphaIIbbeta3. J Biol Chem 1997; 272: 14740-6.
  • 50 Lanza F, Wolf D, Fox CF, Kieffer N, Seyer JM, Fried VA. et al. cDNA cloning and expression of platelet p24/CD9. Evidence for a new family of multiple membrane-spanning proteins. J Biol Chem 1991; 266: 10638-45.
  • 51 Phillips DR, Jennings LK, Edwards HH. Identification of membrane proteins mediating the interaction of human platelets. J Cell Biol 1980; 86: 77-86.
  • 52 Simmons SR, Albrecht RM. Self-association of bound fibrinogen on platelet surfaces. J Lab Clin Med 1996; 128: 39-50.
  • 53 Olorundare OE, Simmons SR, Albrecht RM. Cytochalasin D and E: effects on fibrinogen receptor movement and cytoskeletal reorganization in fully spread, surface-activated platelets: a correlative light and electron microscopic investigation. Blood 1992; 79: 99-109.
  • 54 Ylanne J, Chen Y, O’Toole TE, Loftus JC, Takada Y, Ginsberg MH. Distinct functions of integrin alpha and beta subunit cytoplasmic domains in cell spreading and formation of focal adhesions. J Cell Biol 1993; 122: 223-33.
  • 55 Rooney MM, Parise LV, Lord ST. Dissecting clot retraction and platelet aggregation. Clot retraction does not require an intact fibrinogen gamma chain C terminus. J Biol Chem 1996; 271: 8553-5.
  • 56 Mondoro TH, White MM, Jennings LK. Active GPIIb-IIIa conformations that link ligand interaction with cytoskeletal reorganization. Blood 2000; 96: 2487-95.
  • 57 Bonfini L, Migliaccio E, Pelicci G, Lanfrancone L, Pelicci PG. Not all Shc’s roads lead to Ras. Trends Biochem Sci 1996; 21: 257-61.
  • 58 Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 1996; 87: 733-43.
  • 59 Pronk GJ, de Vries-Smits AM, Buday L, Downward J, Maassen JA, Medema RH. et al. Involvement of Shc in insulin- and epidermal growth factor-induced activation of p21ras. Mol Cell Biol 1994; 14: 1575-81.
  • 60 Yokote K, Mori S, Hansen K, McGlade J, Pawson T, Heldin CH. et al. Direct interaction between Shc and the platelet-derived growth factor beta-receptor. J Biol Chem 1994; 269: 15337-43.
  • 61 Ravichandran KS, Lee KK, Songyang Z, Cantley LC, Burn P, Burakoff SJ. Interaction of Shc with the zeta chain of the T cell receptor upon T cell activation. Science 1993; 262: 902-5.
  • 62 Saxton TM, van Oostveen I, Bowtell D, Aebersold R, Gold MR. B cell antigen receptor cross-linking induces phosphorylation of the p21ras oncoprotein activators SHC and mSOS1 as well as assembly of complexes containing SHC, GRB-2, mSOS1, and a 145-kDa tyrosine-phosphorylated protein. J Immunol 1994; 153: 623-36.
  • 63 Tridandapani S, Pradhan M, LaDine JR, Garber S, Anderson CL, Cogges-hall KM. Protein interactions of Src homology 2 (SH2) domain-containing inositol phosphatase (SHIP): association with Shc displaces SHIP from FcgammaRIIb in B cells. J Immunol 1999; 162: 1408-14.
  • 64 Lecoq-Lafon C, Verdier F, Fichelson S, Chretien S, Gisselbrecht S, Lacombe C. et al. Erythropoietin induces the tyrosine phosphorylation of GAB1 and its association with SHC, SHP2, SHIP, and phosphatidylinositol 3-kinase. Blood 1999; 93: 2578-85.
  • 65 Mainiero F, Pepe A, Wary KK, Spinardi L, Mohammadi M, Schlessinger J. et al. Signal transduction by the alpha6beta4 integrin: distinct beta4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes. Embo J 1995; 14: 4470-81.
  • 66 Barberis L, Wary KK, Fiucci G, Liu F, Hirsch E, Brancaccio M. et al. Distinct roles of the adaptor protein shc and focal adhesion kinase in integrin signaling to ERK. J Biol Chem 2000; 275: 36532-40.
  • 67 Chen KD, Li YS, Kim M, Li S, Yuan S, Chien S. et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 1999; 274: 18393-400.
  • 68 Mauro L, Sisci D, Bartucci M, Salerno M, Kim J, Tam T. et al. SHCalpha5beta1 integrin interactions regulate breast cancer cell adhesion and motility. Exp Cell Res 1999; 252: 439-48.
  • 69 Gu J, Tamura M, Pankov R, Danen EH, Takino T, Matsumoto K. et al. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol 1999; 146: 389-403.
  • 70 Shock DD, He K, Wencel-Drake JD, Parise LV. Ras activation in platelets after stimulation of the thrombin receptor, thromboxane A2 receptor or protein kinase C. Biochem J 1997; 321: 525-30.
  • 71 Kramer RM, Roberts EF, Strifler BA, Johnstone EM. Thrombin induces activation of p38 MAP kinase in human platelets. J Biol Chem 1995; 270: 27395-8.
  • 72 Sato T, Kageura T, Hashizume T, Hayama M, Kitatani K, Akiba S. Stimulation by ceramide of phospholipase A2 activation through a mechanism related to the phospholipase C-initiated signaling pathway in rabbit platelets. J Biochem (Tokyo) 1999; 125: 96-102.
  • 73 Borsch-Haubold AG, Kramer RM, Watson SP. Phosphorylation and activation of cytosolic phospholipase A2 by 38-kDa mitogen-activated protein kinase in collagen-stimulated human platelets. Eur J Biochem 1997; 245: 751-9.
  • 74 Sims PJ, Ginsberg MH, Plow EF, Shattil SJ. Effect of platelet activation on the conformation of the plasma membrane glycoprotein IIb-IIIa complex. J Biol Chem 1991; 266: 7345-52.
  • 75 Kieffer N, Fitzgerald LA, Wolf D, Cheresh DA, Phillips DR. Adhesive properties of the beta3 integrins: comparison of GP IIb-IIIa and the vitronectin receptor individually expressed in human melanoma cells. J Cell Biol 1991; 113: 451-61.
  • 76 Weber C, Springer TA. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to alphaIIbbeta3 and stimulated by platelet-activating factor. J Clin Invest 1997; 100: 2085-93.
  • 77 Uthoff K, Zehr KJ, Geerling R, Herskowitz A, Cameron DE, Reitz BA. Inhibition of platelet adhesion during cardiopulmonary bypass reduces postoperative bleeding. Circulation 1994; 90: 269-74.
  • 78 Tanaka K, Shibata N, Okamoto K, Matsusaka T, Fukuda H, Takagi M. et al. Reorganization of myosin in surface-activated spreading platelets. J Ultrastruct Mol Struct Res 1986; 97: 165-86.
  • 79 Ikeda M, Ariyoshi H, Kambayashi J, Sakon M, Kawasaki T, Monden M. Simultaneous digital imaging analysis of cytosolic calcium and morphological change in platelets activated by surface contact [published erratum appears in J Cell Biochem 1996; 62: 145-6]. J Cell Biochem 1996; 61: 292-300.
  • 80 Shattil SJ, Ginsberg MH, Brugge JS. Adhesive signaling in platelets. Curr Opin Cell Biol 1994; 6: 695-704.
  • 81 Shattil SJ, Haimovich B, Cunningham M, Lipfert L, Parsons JT, Ginsberg MH. et al. Tyrosine phosphorylation of pp125FAK in platelets requires coordinated signaling through integrin and agonist receptors. J Biol Chem 1994; 269: 14738-45.
  • 82 Weiss HJ, Turitto VT. Prostacyclin (prostaglandin I2, PGI2) inhibits platelet adhesion and thrombus formation on subendothelium. Blood 1979; 53: 244-50.
  • 83 Tohyama Y, Tohyama K, Tsubokawa M, Asahi M, Yoshida Y, Yamamura H. Outside-In signaling of soluble and solid-phase fibrinogen through integrin alphaIIbbeta3 is different and cooperative with each other in a megakaryoblastic leukemia cell line, CMK. Blood 1998; 92: 1277-86.
  • 84 Wu Y, Ozaki Y, Inoue K, Satoh K, Ohmori T, Yatomi Y. et al. Differential activation and redistribution of c-Src and Fyn in platelets, assessed by MoAb specific for C-terminal tyrosine- dephosphorylated c-Src and Fyn. Biochim Biophys Acta 2000; 1497: 27-36.
  • 85 Blystone SD, Lindberg FP, Williams MP, McHugh KP, Brown EJ. Inducible tyrosine phosphorylation of the beta3 integrin requires the alphaV integrin cytoplasmic tail. J Biol Chem 1996; 271: 31458-62.
  • 86 Schaffner-Reckinger E, Gouon V, Melchior C, Plancon S, Kieffer N. Distinct involvement of beta3 integrin cytoplasmic domain tyrosine residues 747 and 759 in integrin-mediated cytoskeletal assembly and phosphotyrosine signaling. J Biol Chem 1998; 273: 12623-32.
  • 87 Sakai T, Zhang Q, Fassler R, Mosher DF. Modulation of beta1A integrin functions by tyrosine residues in the beta1 cytoplasmic domain. J Cell Biol 1998; 141: 527-38.
  • 88 Wennerberg K, Armulik A, Sakai T, Karlsson M, Fassler R, Schaefer EM. et al. The cytoplasmic tyrosines of integrin subunit beta1 are involved in focal adhesion kinase activation. Mol Cell Biol 2000; 20: 5758-65.
  • 89 Fox JE, Lipfert L, Clark EA, Reynolds CC, Austin CD, Brugge JS. On the role of the platelet membrane skeleton in mediating signal transduction. Association of GP IIb-IIIa, pp60c-src, pp62c-yes, and the p21ras GTPase-activating protein with the membrane skeleton. J Biol Chem 1993; 268: 25973-84.
  • 90 Judd BA, Myung PS, Leng L, Obergfell A, Pear WS, Shattil SJ. et al. Hematopoietic reconstitution of SLP-76 corrects hemostasis and platelet signaling through alphaIIbbeta3 and collagen receptors. Proc Natl Acad Sci USA 2000; 97: 12056-61.
  • 91 Obergfell A, Judd BA, del Pozo MA, Schwartz MA, Koretzky GA, Shattil SJ. The molecular adapter SLP-76 relays signals from platelet integrin alphaIIbbeta3 to the actin cytoskeleton. J Biol Chem 2001; 276: 5916-23.
  • 92 Roll RL, Bauman EM, Bennett JS, Abrams CS. Phosphorylated pleckstrin induces cell spreading via an integrin-dependent pathway. J Cell Biol 2000; 150: 1461-6.
  • 93 Inagaki K, Yamao T, Noguchi T, Matozaki T, Fukunaga K, Takada T. et al. SHPS-1 regulates integrin-mediated cytoskeletal reorganization and cell motility. Embo J 2000; 19: 6721-31.
  • 94 Banfic H, Tang X, Batty IH, Downes CP, Chen C, Rittenhouse SE. A novel integrin-activated pathway forms PKB/Akt-stimulatory phosphatidylinositol 3,4-bisphosphate via phosphatidylinositol 3-phosphate in platelets. J Biol Chem 1998; 273: 13-6.
  • 95 Giuriato S, Bodin S, Erneux C, Woscholski R, Plantavid M, Chap H. et al. pp60c-src associates with the SH2-containing inositol-5-phosphatase SHIP1 and is involved in its tyrosine phosphorylation downstream of alphaIIbbeta3 integrin in human platelets. Biochem J 2000; 348: 107-12.
  • 96 Chung SH, Polgar J, Reed GL. Protein kinase C phosphorylation of syntaxin 4 in thrombin-activated human platelets. J Biol Chem 2000; 275: 25286-91.
  • 97 Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999; 285: 1028-32.
  • 98 Bray PF. Integrin polymorphisms as risk factors for thrombosis. Thromb Haemost 1999; 82: 337-44.
  • 99 Bray PF. Platelet glycoprotein polymorphisms as risk factors for thrombosis. Curr Opin Hematol 2000; 7: 284-9.
  • 100 Feng D, Lindpaintner K, Larson MG, Rao VS, O’Donnell CJ, Lipinska I. et al. Increased platelet aggregability associated with platelet GPIIIa PlA2 polymorphism: the Framingham Offspring Study. Arterioscler Thromb Vasc Biol 1999; 19: 1142-7.
  • 101 McHugh KP, Hodivala-Dilke K, Zheng MH, Namba N, Lam J, Novack D. et al. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 2000; 105: 433-40.
  • 102 Scarborough RM, Kleiman NS, Phillips DR. Platelet glycoprotein IIb/IIIa antagonists. What are the relevant issues concerning their pharmacology and clinical use? Circulation 1999; 100: 437-44.
  • 103 Bhatt DL, Topol EJ. Current role of platelet glycoprotein IIb/IIIa inhibitors in acute coronary syndromes. JAMA 2000; 284: 1549-58.
  • 104 Newby LK, McGuire DK. Oral platelet glycoprotein IIb/IIIa inhibition. Curr Cardiol Rep 2000; 2: 372-7.
  • 105 Cannon CP. Learning from the recently completed oral glycoprotein IIb/IIIa receptor antagonist trials. Clin Cardiol. 2000 suppl 6: VI-14-7.