Thromb Haemost 2001; 86(01): 404-412
DOI: 10.1055/s-0037-1616238
Research Article
Schattauer GmbH

Gene Expression in Atherogenesis

Houshang Monajemi*
1   Department of Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands
,
E. Karin Arkenbout*
1   Department of Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands
,
Hans Pannekoek
1   Department of Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands
› Author Affiliations
Further Information

Publication History

Publication Date:
12 December 2017 (online)

Summary

It is conceivable that the extent and spatio-temperal expression of dozens or even a few hundred genes are significantly altered during the development and progression of atherosclerosis as compared to normal circumstances. Differential gene expression in vascular cells and in blood cells, due to gene-gene and gene-environment interactions can be considered the molecular basis for this disease. To comprehend the coherence of the complex genetic response to systemic and local atherosclerotic challenges, one needs accessible high through-put technologies to analyze a panel of differentially expressed genes and to describe the interactions between and among their gene products. Fortunately, new technologies have been developed which allow a complete inventory of differential gene expression, i.e. DD/RT-PCR, SAGE and DNA micro-array. The initial data on the application of these technologies in cardiovascular research are now being reported. This review summarizes a number of key observations. Special attention is paid to a few central transcription factors which are differentially expressed in endothelial cells, smooth muscle cells or monocytes/ macrophages. Recent data on the role of nuclear factor- B (NF-κB) and peroxisome proliferation-activating receptors (PPARs) are discussed. Like the PPARs, the NGFI-B subfamily of orphan receptors (TR3, MINOR and NOT) also belongs to the steroid/thryroid hormone receptor superfamily of transcription factors. We report that this subfamily is specifically induced in a sub-population of neointimal smooth muscle cells. Furthermore, intriguing new data implicating the Sp/XKLF family of transcription factors in cell-cell communication and maintenance of the atherogenic phenotype are mentioned. A member of the Sp/XKLF family, the shear stress-regulated lung Krüppel-like factor (LKLF) is speculated to be instrumental for the communication between endothelial cells and smooth muscle cells. Taken together, the expectation is that the fundamental knowledge obtained on atherogenesis and the data that will be acquired during the coming decade with the new, powerful high through-put methodologies will lead to novel modalities to treat patients suffering from cardiovascular disease. In view of the phenotypic changes of vascular and blood-borne cells during atherogenesis, therapeutic interventions likely will focus on reversal of an acquired phenotype by gene therapy approach or by using specific drugs which interfere with aberrant gene expression.

* These authors contributed equally to this review.


 
  • References

  • 1 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990′s. Nature 1993; 362: 801-9.
  • 2 Ross R. Atherosclerosis an inflammatory disease. N Engl J Med 1999; 340: 115-26.
  • 3 Lusis AJ. Atherosclerosis. Nature 2000; 407: 233-41.
  • 4 Davies PF, Tripathi SC. Mechanical stress mechanisms and the cell: an endothelial paradigm. Circ. Res 1993; 72: 239-45.
  • 5 Gimbrone Jr MA, Nagel T, Topper JN. Biomechanical activation: an emerging paradigma in endothelial adhesion biology. J Clin Invest 1997; 99: 1809-13.
  • 6 Nagel T, Resnick N, Dewey Jr CF, Gimbrone Jr MA. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscl Thromb Vasc Biol 1999; 19: 1825-34.
  • 7 Stary HC. Natural history and histological classification of atherosclerotic lesions. Arterioscl Thromb Vasc Biol 2000; 20: 1177-8.
  • 8 Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscl Thromb Vasc Biol 2000; 20: 1262-75.
  • 9 Dawber TR, Kannel WB. The Framingham study. An epidemiological approach to coronary heart disease. Circulation 1966; 34: 553-5.
  • 10 Kullo IJ, Gau GT, Tajik AJ. Novel risk factors for atherosclerosis. Mayo Clin Proc 2000; 75: 369-80.
  • 11 Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD. The combined role of P- and E-selectin in atherosclerosis. J Clin Invest 1998; 102: 145-52.
  • 12 Bazzoni G, Martinez-Estrada O, Dejana E. Molecular structure and functional role of vascular tight junctions. Trends Cardiovasc Med 1999; 9: 147-52.
  • 13 Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 1995; 75: 487-517.
  • 14 Shanahan CM, Weisberg PL. Smooth muscle cell heterogeneity: patterns of gene expression in vascular smooth muscle cells in vitro and in vivo. Arterioscl Thromb Vasc Biol 1998; 18: 333-8.
  • 15 Adam PJ, Regan CP, Hautmann MB, Owens GK. Positive- and negative-acting Krüppel-like transcription factors bind a transforming growth factor control element required for expression of the smooth muscle cell differentiation marker SM22 in vivo. J Biol Chem 2000; 275: 37798-806.
  • 16 Van Buul-Wortelboer MF, Brinkman HJM, Dingemans KP, de Groot PhG, van Aken WG, van Mourik JA. Reconstruction of the vessel wall in vitro: A novel model to study the interactions between endothelial cells and smooth muscle cells. Exp Cell Res 1986; 162: 151-9.
  • 17 Hakkert BC, Rentenaar JM, van Mourik JA. Monocytes enhance the bidirectional release of type 1 plasminogen activator inhibitor by endothelial cells. Blood 1990; 76: 2272-8.
  • 18 Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 1992; 14: 967-71.
  • 19 Bauer D, Muller H, Reich J, Riedel H, Aherenkiel V, Warthoe P, Strauss M. Identification of differentially expressed mRNA by an improved display technique (DDRT-PCR). Nucleic Acids Res 1993; 21: 4272-80.
  • 20 Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science 1995; 270: 484-7.
  • 21 Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with complementary DNA microarray. Science 1995; 270: 487-90.
  • 22 St. Croix B. Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW. Genes expressed in human tumor endothelium. Science 2000; 289: 1197-2002.
  • 23 Horrevoets AJG, Fontijn RD, van Zonneveld AJ, de Vries CJ, ten Cate JW, Pannekoek H. Vascular endothelial genes that are responsive to tumor necrosis factor-alpha in vitro are expressed in atherosclerotic lesions, including inhibitor of apoptosis protein-1, stannin, and two novel genes. Blood 1999; 93: 3418-31.
  • 24 De Vries CJM, van Achterberg TAE, Horrevoets AJG, ten Cate JW, Pannekoek H. Differential display identification of 40 genes with altered expression in activated human smooth muscle cells: local expression in atherosclerotic lesions of smags, smooth muscle cell activation-specific genes. J Biol Chem 2000; 275: 23939-47.
  • 25 Beauchamp NJ, van Achterberg TAE, Engelse MA, de Vries CJM, Pannekoek H. Global gene expression profiling of resting and atherosclerotic human arterial smooth muscle cells by serial analysis of gene expression (SAGE). (submitted).
  • 26 Van Soest S, Horrevoets AJG, Beauchamp NJ, Pannekoek H. Current technologies in gene expression profiling: applications to cardiovascular research. Fibrinolysis & Proteolysis 2000; 14: 73-81.
  • 27 Engelse MA, Neele JM, van Achterberg TAE, van Aken BE, van Schaik RHN, Pannekoek H, de Vries CJM. Human activin-A is expressed in the atheroscleotic lesion and promotes the contractile phenotype of smooth muscle cells. Circ Res 1999; 85: 931-9.
  • 28 Aird WC, Jahroudi N, Weiler-Guettler H, Rayburn HB, Rosenberg RD. Human von Willebrand factor sequences target expression of a subpopulation of endothelial cells in transgenic mice. Proc Natl Acad Sci U. S 1995; 92: 4567-71.
  • 29 Aird WC, Edelberg JM, Weiler-Guettler H, Simmons WW, Smith TW, Rosenberg RD. Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J Cell Biol 1997; 138: 1117-24.
  • 30 Edelberg JM, Aird WC, Rayburn H, Mamuya WS, Mercola M, Rosenberg RD. PDGF mediates cardiac microvascular communication. J Clin Invest 1998; 102: 837-43.
  • 31 Guillot PV, Guan L, Liu L, Kuivenhoven JA, Rosenberg RD, Sessa WC, Aird WC. A vascular-bed specific pathway. J Clin Invest 1999; 103: 799-805.
  • 32 Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998; 91: 3527-61.
  • 33 Vogel RA. Cholesterol lowering and endothelial function. Am J Med 1999; 107: 479-87.
  • 34 Topper JN, Gimbrone Jr MA. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol Med Today 1999; 5: 40-6.
  • 35 Shi W, Haberland ME, Jien ML, Shih DM, Lusis AJ. Endothelial responses to oxidized lipoproteins determine genetic susceptibility to atherosclerosis in mice. Circulation 2000; 102: 75-81.
  • 36 Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA, Neumeier D. Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest 1996; 97: 1715-22.
  • 37 Baeuerle PA, Henkel T. IB: a specific inhibitor of the NF-κB transcription factor. Science 1988; 242: 540-6.
  • 38 Wilson SH, Caplice NM, Simari RD, Holmes Jr DR, Carlson PJ, Lerman A. Activated nuclear factor-kappaB is present in the coronary vasculature in experimental hypercholesterolemia. Atherosclerosis 2000; 148: 23-30.
  • 39 De Waard V, van den Berg BMM, Veeken J, Schultz-Heienbrok R, Pannekoek H, van Zonneveld AJ. Serial analysis of gene expression to study the endothelial cell response to an atherogenic stimulus. Gene 1999; 226: 1-8.
  • 40 Davies PF, Polacek DC, Handen JS, Helmke BP, DePaola N. A spatial approach to transcriptional profiling: mechanotransduction and the focal origin of atherosclerosis. Trends Biotechnol 1999; 17: 347-51.
  • 41 Gimbrone Jr MA. Endothelial dysfunction, hemodynamic forces, and atherosclerosis. Thromb Haemost 1999; 82: 722-6.
  • 42 Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. J Amer Med Assoc 1999; 282: 2035-42.
  • 43 Topper JN, Cai J, Falb D, Gimbrone Jr MA. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci USA 1996; 93: 10417-22.
  • 44 Kolpakov V, Polishchuk R, Bannykh S, Rekhter M, Solovjev P, Romanov Y, Tararak E, Antonov A, Mironov A. Atherosclerosis-prone branch regions in human aorta: microarchitecture and cell composition of intima. Atherosclerosis 1996; 122: 173-89.
  • 45 Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulsky MI. The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci USA 2000; 97: 9052-7.
  • 46 Philipsen S, Suske G. A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res 1999; 27: 2991-3000.
  • 47 Kuo CT, Veselits ML, Leiden JM. LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science 1997; 277: 1986-90.
  • 48 Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, Leiden JM. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 1997; 11: 2996-3006.
  • 49 Collins T. Endothelial nuclear factor-B and the initiation of the atherosclerotic lesion. Lab Invest 1993; 68: 499-508.
  • 50 Ghosh S, May MJ, Kopp EB. NF-κB and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 6: 225-60.
  • 51 Tschopp J, Irmler M, Thome M. Inhibition of fas death signals by FLIPs. Curr Opin Immunol 1998; 10: 552-8.
  • 52 Karin M. The beginning of the end: IB Kinase (IKK) and NF-κB Activation. J Biol Chem 1999; 274: 27339-42.
  • 53 Hofer-Warbinek R, Schmid JA, Stehlik C, Binder BR, Lipp J, de Martin R. Activation of NF-κB by XIAP, the X chromsome-linked inhibitor of apoptosis, in endothelial cell involves TAK1. J Biol Chem 2000; 275: 22064-8.
  • 54 Kataoka T, Budd RC, Holler N, Thome M, Martinon F, Irmler M, Burns K, Hahne M, Kennedy N, Kovacsovics M, Tschopp J. The caspase-8 inhibitor FLIP promotes activation of NF-κB and Erk signalling pathways. Curr Biol 2000; 10: 640-8.
  • 55 Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, Witztum JL, Auwerx J, Palinski W, Glass CK. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipo-protein. Proc Natl Acad Sci USA 1998; 95: 7614-9.
  • 56 Delerive P, Gervois P, Fruchart JC, Staels B. Induction of B expression as a mechanism contributing to the anti-inflammatory activities of PPAR activators. J Biol Chem 2000; 275: 36703-7.
  • 57 Staels B, Koenig W, Habib A, Merval R, Lebret M, Chinetti G, Fruchart JC, Najib J, Maclouf J, Tedgui A. Activation of human smooth-muscle cells is inhibited by PPARα but not by PPARγ activators. Nature 1998; 393: 790-3.
  • 58 Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM, Frank J, Gonzalez Fruchart JC, Tedgui A, Haegeman G, Staels B. Peroxisome proliferator-activated receptor negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-κB and AP-1. J Biol Chem 1999; 274: 32048-54.
  • 59 Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK. Peroxisome proliferator–activated receptor ligands inhibit development of atherosclerosis in LDL receptor–deficient mice. J Clin Invest 2000; 106: 523-31.
  • 60 Law RE, Meehan WP, Xi XP, Graf K, Wuthrich DA, Coats W, Faxon D, Hsue WA. Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. J Clin Invest 1996; 98: 1897-905.
  • 61 Jackson SM, Parhami F, Xi XP, Berliner JA, Hsueh WA, Law RE, Demer LL. Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial interaction. Arterioscl Thromb Vasc Biol 1999; 19: 2094-104.
  • 62 Murao K, Imachi H, Momoi A, Sayo Y, Hosokawa H, Sato M, Ishida T, Takahara J. Thiazolidinedione inhibits the production of monocyte chemoattractant protein-1 in cytokine-treated human vascular endothelial cell. FEBS Lett 1999; 454: 27-30.
  • 63 Maruyama K, Tsukada T, Ohkura N, Bandoh S, Tetsuij H, Yamaguchi K. The NGFI-B subfamily of nuclear receptor superfamily. Int J Oncol 1998; 12: 1237-43.
  • 64 Hautmann MB, Madsen CS, Owens GK. The transforming growth factor beta (TGF) control element drives TGF-induced stimulation of smooth muscle α-actin gene expression in concert with two CarG elements. J Biol Chem 1997; 272: 10948-59.
  • 65 Hashimoto S, Suzuki T, Dong HY, Yamazaki N, Matsushima K. Serial analysis of gene expression in human monocytes and macrophages. Blood 1999; 94: 837-44.
  • 66 Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR-gamma. Cell 1998; 93: 229-40.
  • 67 Tontonez P, Nagy L, Alvarez JGA, Thomazy VA, Evans RM. PPAR promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93: 241-52.
  • 68 Ricote M, Li AC, Wilson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 1998; 391: 79-82.
  • 69 Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391: 82-6.
  • 70 Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, Sharma K, Silverstein RL. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000; 105: 1049-56.
  • 71 Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, Fruchart JC, Chapman J, Najib J, Staels B. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998; 273: 25573-80.
  • 72 Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, Milstone DS, Mortensen RM, Spiegelman BM, Freeman MW. The role of PPAR- in macrophage differentiation and cholesterol uptake. Nature Med 2001; 7: 41-7.
  • 73 Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM. PPAR- dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Med 2001; 7: 48-52.
  • 74 Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB, Fruchart JC, Clavey V, Staels B. PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nature Med 2001; 7: 53-8.