Arthritis und Rheuma 2016; 36(01): 15-20
DOI: 10.1055/s-0037-1616805
Kinder-rheumatologie/Leitsymptom Hüftschmerz
Schattauer GmbH

Chondrokalzinose des Hüftgelenks

Chondrocalcinosis of the hip
T. Hawellek
1   Klinik für Orthopädie, Klinikum Bad Bramstedt
2   Klinik und Poliklinik für Orthopädie, Universitätsklinikum Hamburg-Eppendorf
,
J. Hubert
2   Klinik und Poliklinik für Orthopädie, Universitätsklinikum Hamburg-Eppendorf
,
W. Rüther
1   Klinik für Orthopädie, Klinikum Bad Bramstedt
2   Klinik und Poliklinik für Orthopädie, Universitätsklinikum Hamburg-Eppendorf
› Author Affiliations
Further Information

Publication History

Publication Date:
22 December 2017 (online)

Zusammenfassung

Die Chondrokalzinose des Hüftgelenks ist gekennzeichnet durch Calcium-Phosphat-Kristall-Ablagerungen im hyalinen Knorpel der Hüfte und im Faserknorpel des Labrums acetabulare. Physikochemisch wie auch in ihrem pathogenetischen Potenzial werden zwei Gruppen von Calcium-Phosphat-Kristallen unterschieden: BCP-und CPPD-Kristalle. Bei der Chondrokalzinose lassen sich beide Minerale nachweisen. Es ist unklar, ob die beiden Kristallformen eine unterschiedliche Pathogenese und klinische Bedeutung haben. Calcium-Phosphat-Kristalle können das Hüftgelenk sowohl auf biomechanischer als auch auf biochemischer Ebene schädigen. Sie können eine kristallbedingte Synovialitis erzeugen. Möglicherweise tragen auch Nozizeptoren im Labrum actebulare zur Schmerzentstehung im Hüftgelenk bei. Die Prävalenz von Calcium-Phosphat-Kristallen im Hüftgelenk wird durch die schwierige Diagnostik vermutlich unterschätzt. Es steht aktuell nur eine symptomatische Therapie mit antiinflammatorischer Schmerzmedikation zur Verfügung, ein kausaler Therapieansatz fehlt weiterhin.

Summary

Chondrocalcinosis of the hip joint is characterized by calcium phosphate crystal deposition in hyaline cartilage of the hip respectively fibrocartilage of the labrum acetabulare. There are two groups of calcium phosphate crystals, differing in physicochemical and pathogenic potential: BCP- and CPPDcrystals. In joints with chondrocalcinosis both types of crystals can be detected. It is unknown if these crystals have a different pathogenesis and clinical relevance. Calcium phosphate crystals can alter biomechanical and biochemical properties in the hip joint. These crystals can cause a crystal induced synovitis. Moreover nociceptors in the labrum acetabulare contribute to the formation of hip pain. The prevalence of calcium phosphate crystals in the hip joint is probably underestimated, due to the difficulty in detecting these crystals. Until now there is only a symptomatically therapeutic intervention with anti-inflammatory painkillers available, a causal therapeutic intervention is still missing.

 
  • Literatur

  • 1 Zitnan D, Sit’Aj S. Chondrocalcinosis in articularis section. Ann Rheum Dis 1963; 02: 142-152.
  • 2 Zhang W, Doherty M, Bardin T. et al. European League Against Rheumatism recommendations for calcium pyrophosphate deposition. Part I: terminology and diagnosis. Ann Rheum Dis 2011; 70 (04) 563-570.
  • 3 Schinke T, McKee MD, Karsenty G. Extracellular matrix calcification: where is the action?. Nat Genet 1999; 21 (02) 150-151.
  • 4 Ea HK, Nguyen C, Bazin D. et al. Articular cartilage calcification in osteoarthritis: insights into crystal-induced stress. Arthritis Rheum 2011; 63 (01) 10-18.
  • 5 Thouverey C, Bechkoff G, Pikula S, Buchet R. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis Cartilage 2009; 17 (01) 64-72.
  • 6 Kirsch T, Swoboda B, Nah H. Activation of annexin II and V expression, terminal differentiation, mineralization and apoptosis in human osteoarthritic cartilage. Osteoarthritis Cartilage 2000; 08: 294-302.
  • 7 Golub EE. Biomineralization and matrix vesicles in biology and pathology. Semin Immunopathol 2011; 33 (05) 409-417.
  • 8 Pendleton A, Johnson MD, Hughes A. et al. Mutations in ANKH cause chondrocalcinosis. Am J Hum Genet 2002; 71 (04) 933-490 [Epub 2002 Sep 20].
  • 9 Pritzker KP. Counterpoint: hydroxyapatite crystal deposition is not intimately involved in the pathogenesis and progression of human osteoarthritis. Curr Rheumatol Rep 2009; 11: 148-153.
  • 10 Wilkins E, Dieppe P, Maddison P, Evison G. Osteoarthritis and articular chondrocalcinosis in the elderly. Ann Rheum Dis 1983; 42 (03) 280-284.
  • 11 Ramonda R, Musacchio E, Perissinotto E. et al. Prevalence of chondrocalcinosis in Italian subjects from northeastern Italy. The Pro.V.A. (PROgetto Veneto Anziani) study. Clin Exp Rheumatol 2009; 27 (06) 981-984.
  • 12 Abhishek A, Doherty S, Maciewicz R. et al. Chondrocalcinosis is common in the absence of knee involvement. Arthritis Res Ther 2012; 14 (05) R205.
  • 13 Cooke WR, Gill HS, Murray DW, Ostlere SJ. Discrete mineralisation of the acetabular labrum: a novel marker of femoroacetabular impingement?. Br J Radiol 2013; 86 (1021): 20120182.
  • 14 Abreu M, Johnson K, Chung CB. et al. Calcification in calcium pyrophosphate dihydrate (CPPD) crystalline deposits in the knee: anatomic, radiographic, MR imaging, and histologic study in cadavers. Skeletal Radiol 2004; 33 (07) 392-398.
  • 15 Mitsuyama H, Healey RM, Terkeltaub RA. et al. Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis. Osteoarthritis Cartilage 2007; 15 (05) 559-565.
  • 16 Derfus BA, Kurian JB, Butler JJ. et al. The high prevalence of pathologic calcium crystals in preoperative knees. J Rheumatol 2002; 29 (03) 570-574.
  • 17 Nalbant S, Martinez JA, Kitumnuaypong T. et al. Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthritis Cartilage 2003; 11 (01) 50-54.
  • 18 Ryu K, Iriuchishima T, Oshida M. et al. The prevalence of and factors related to calcium pyrophosphate dihydrate crystal deposition in the knee joint. Osteoarthritis Cartilage 2014; 22 (07) 975-979.
  • 19 Fuerst M, Niggemeyer O, Lammers L. et al. Articular cartilage mineralization in osteoarthritis of the hip. BMC Musculoskelet Disord 2009; 10: 166.
  • 20 Fuerst M, Bertrand J, Lammers L. et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum 2009; 60 (09) 2694-2703.
  • 21 Jackson TJ, Stake CE, Stone JC. et al. Radiographic, histologic, and arthroscopic findings in amorphous calcifications of the hip labrum. Arthroscopy 2014; 30 (04) 456-461.
  • 22 Roemhildt ML, Beynnon BD, Gardner-Morse M. Mineralization of articular cartilage in the Sprague-Dawley rat: characterization and mechanical analysis. Osteoarthritis Cartilage 2012; 20 (07) 796-800.
  • 23 Roemhildt ML, Gardner-Morse MG, Morgan CF. et al. Calcium phosphate particulates increase friction in the rat knee joint. Osteoarthritis Cartilage 2014; 22 (05) 706-709.
  • 24 Morgan MP, Whelan LC, Sallis JD. et al. Basic calcium phosphate crystal-induced prostaglandin E2 production in human fibroblasts: role of cyclooxygenase 1, cyclooxygenase 2, and interleukin- 1beta. Arthritis Rheum 2004; 50 (05) 1642-1649.
  • 25 Nasi S, So A, Combes C. et al. Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis. Ann Rheum Dis. 2015 Aug 7.
  • 26 Grandjean-Laquerriere A, Tabary O, Jacquot J. et al. Involvement of toll-like receptor 4 in the inflammatory reaction induced by hydroxyapatite particles. Biomaterials 2007; 28 (03) 400-404.
  • 27 Bai G, Howell DS, Howard GA. et al. Basic calcium phosphate crystals up-regulate metalloproteinases but down-regulate tissue inhibitor of metalloproteinase-1 and -2 in human fibroblasts. Osteoarthritis Cartilage 2001; 09 (05) 416-422.
  • 28 McCarthy GM, Westfall PR, Masuda I. et al. Basic calcium phosphate crystals activate human osteoarthritic synovial fibroblasts and induce matrix metalloproteinase-13 (collagenase-3) in adult porcine articular chondrocytes. Ann Rheum Dis 2001; 60 (04) 399-406.
  • 29 Ea HK, Uzan B, Rey C, Lioté F. Octacalcium phosphate crystals directly stimulate expression of inducible nitric oxide synthase through p38 and JNK mitogen-activated protein kinases in articular chondrocytes. Arthritis Res Ther 2005; 07 (05) R915-R926.
  • 30 Ea HK, Monceau V, Camors E. et al. Annexin 5 overexpression increased articular chondrocyte apoptosis induced by basic calcium phosphate crystals. Ann Rheum Dis 2008; 67 (11) 1617-1625.
  • 31 Lioté F, Ea HK. Clinical implications of pathogenic calcium crystals. Curr Opin Rheumatol 2014; 26 (02) 192-196.
  • 32 Takeshita M, Nakamura J, Ohtori S. et al. Sensory innervation and inflammatory cytokines in hypertrophic synovia associated with pain transmission in osteoarthritis of the hip: a case-control study. Rheumatology (Oxford) 2012; 51 (10) 1790-1795 [Epub 2012 Jul 5].
  • 33 Shirai C, Ohtori S, Kishida S. et al. The pattern of distribution of PGP 9.5 and TNF-alpha immunoreactive sensory nerve fibers in the labrum and synovium of the human hip joint. Neurosci Lett 2009; 450 (01) 18-22.
  • 34 Dhollander AA, Lambrecht S, Verdonk PC. et al. First insights into human acetabular labrum cell metabolism. Osteoarthritis Cartilage 2012; 20 (07) 670-677.
  • 35 Ea HK, Chobaz V, Nguyen C. et al. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies. PLoS One 2013; 08 (02) e57352.
  • 36 Cheung HS, Sallis JD, Demadis KD, Wierzbicki A. Phosphocitrate blocks calcification-induced articular joint degeneration in a guinea pig model. Arthritis Rheum 2006; 54 (08) 2452-2461.
  • 37 Pascart T, Richette P, Flipo RM. Treatment of nongout joint deposition diseases: an update. Arthritis 2014; 2014: 375202.