Hamostaseologie 2007; 27(04): 241-245
DOI: 10.1055/s-0037-1617088
Original article
Schattauer GmbH

Funktionelle Proteomanalyse humaner Thrombozyten

Functional proteome analysis of human platelets
U. Lewandrowski
1   Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg
,
R. P. Zahedi
1   Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg
,
J. Moebius
1   Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg
,
A. Sickmann
1   Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
27. Dezember 2017 (online)

Zusammenfassung

Thrombozyten sind als anukleäre Zellen ideale Forschungsobjekte für moderne Proteomanalysen. Trotz ihrer Bedeutung in Hämostase und Thrombose ist das Proteinrepertoire von Plättchen zu großen Teilen bislang nicht detailliert charakterisiert worden. In Vorbereitung auf bioinformatische und funktionelle Studien wurde eine Reihe von Proteomanalysen auf Thrombozytensubproteome angewendet, die ein Plasmamembranproteom sowie die Analyse von posttranslationalen Modifikationen einschließen. Auf dieser Basis konnten 489 Proteine dargestellt werden, die nicht in bisherigen Proteomansätzen charakterisiert wurden sowie über 550 Phosphorylierungs- und 326 N-Glykosylierungsstellen. Diese Ergebnisse stellen neue Ansatzpunkte für funktionelle Forschungen durch die Identifikation neuer Plättchenproteine bzw. derer Modifikationen dar.

Summary

Platelets are anucleated cells and therefore ideal research objects for modern proteome analyses. Despite their importance in thrombosis and hemostasis the protein content of platelets is still poorly characterized in major parts. In preparation for bioinformatic and functional studies a series of proteomic analyses was conducted for platelet subproteomes as well as for posttranslational modifications. Thereby, the identification of 489 proteins, over 550 phosphorylations and 326 N-glycosylation sites was possible, which were not identified in previous proteome studies of platelets. Those results represent new research possibilities for functional characterization of platelet proteins as well as their modifications.

 
  • Literatur

  • 1 Wilkins MR, Sanchez JC, Gooley AA. et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996; 13: 19-50.
  • 2 Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988; 60: 2299-2301.
  • 3 Fenn JB, Mann M, Meng CK. et al. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989; 246: 64-71.
  • 4 Bentley DR. The Human Genome Project--an overview. Med Res Rev 2000; 20: 189-196.
  • 5 Perkins DN, Pappin DJ, Creasy DM. et al. Probability- based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999; 20: 3551-3567.
  • 6 Clementson K. Platelet receptors. In: Michelson A. (ed). Platelets. San Diego: 2002: 64-84.
  • 7 Marcus K, Immler D, Sternberger J. et al. Identification of platelet proteins separated by two-dimensional gel electrophoresis and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and detection of tyrosine- phosphorylated proteins. Electrophoresis 2000; 21: 2622-2636.
  • 8 Garcia A, Prabhakar S, Brock CJ. et al. Extensive analysis of the human platelet proteome by twodimensional gel electrophoresis and mass spectrometry. Proteomics 2004; 4: 656-668.
  • 9 O’Neill EE, Brock CJ, von Kriegsheim AF. et al. Towards complete analysis of the platelet proteome. Proteomics 2002; 2: 288-305.
  • 10 Garcia BA, Smalley DM, Cho H. et al. The Platelet Microparticle Proteome. J Proteome Res 2005; 4: 1516-1521.
  • 11 Crawford N, Authi KS, Hack N. Isolation and characterization of platelet membranes prepared by free flow electrophoresis. Methods Enzymol 1992; 215: 5-20.
  • 12 Kinoshita T, Nachman RL, Minick R. Isolation of human platelet plasma membranes with polylysine beads. J Cell Biol 1979; 82: 688-696.
  • 13 Barber AJ, Jamieson GA. Isolation and characterization of plasma membranes from human blood platelets. J Biol Chem 1970; 245: 6357-6365.
  • 14 Rittenhouse-Simmons S, Deykin D. Isolation of membranes from normal and thrombin-treated gel-filtered platelets using a lectin marker. Biochim Biophys Acta 1976; 426: 688-696.
  • 15 Lanillo M, Cabezas JA. Isolation, characterization and chemical composition of the membrane from sheep platelets. Biochim Biophys Acta 1981; 649: 229-238.
  • 16 Moebius J, Zahedi RP, Lewandrowski U. et al. The human platelet membrane proteome reveals several new potential membrane proteins. Mol Cell Proteomics 2005; 4: 1754-1761.
  • 17 Persson A, Jergil B. The purification of membranes by affinity partitioning. Faseb J 1995; 9: 1304-1310.
  • 18 Schindler J, Lewandrowski U, Sickmann A. et al. Proteomic analysis of brain plasma membranes isolated by affinity two-phase partitioning. Mol Cell Proteomics 2006; 5: 390-400.
  • 19 Hartinger J, Stenius K, Hogemann D. et al. 16-BAC/SDS-PAGE: a two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal Biochem 1996; 240: 126-133.
  • 20 De Vet EC, Aguado B, Campbell RD. G6b, a novel immunoglobulin superfamily member encoded in the human major histocompatibility complex, interacts with SHP-1 and SHP-2. J Biol Chem 2001; 276: 42070-42076.
  • 21 De Vet EC, Newland SA, Lyons PA. et al. The cell surface receptor G6b, a member of the immunoglobulin superfamily, binds heparin. FEBS Lett 2005; 579: 2355-2358.
  • 22 Senis YA, Tomlinson MG, Garcia A. et al. A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel ITIM protein. Mol Cell Proteomics 2007; 6: 548-564.
  • 23 Le Naour F, Andre M, Greco C. et al. Profiling of the tetraspanin web of human colon cancer cells. Mol Cell Proteomics 2006; 5: 845-857.
  • 24 Hemler ME. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 2005; 6: 801-811.
  • 25 Lau LM, Wee JL, Wright MD. et al. The tetraspanin superfamily member CD151 regulates outside- in integrin alphaIIbbeta3 signaling and platelet function. Blood 2004; 104: 2368-2375.
  • 26 Reinders J, Sickmann A. State-of-the-art in phosphoproteomics. Proteomics 2005; 5: 4052-4061.
  • 27 Pinkse MW, Uitto PM, Hilhorst MJ. et al. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC- ESI-MS/MS and titanium oxide precolumns. Anal Chem 2004; 76: 3935-3943.
  • 28 Kuroda I, Shintani Y, Motokawa M. et al. Phosphopeptide- selective column-switching RP-HPLC with a titania precolumn. Anal Sci 2004; 20: 1313-1319.
  • 29 Beausoleil SA, Jedrychowski M, Schwartz D. et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 2004; 101: 12130-12135.
  • 30 Gu J, Taniguchi N. Regulation of integrin functions by N-glycans. Glycoconj J 2004; 21: 9-15.
  • 31 Kunicki TJ, Cheli Y, Moroi M. et al. The influence of N-linked glycosylation on the function of platelet glycoprotein VI. Blood 2005; 106: 2744-2749.
  • 32 Josefsson EC, Gebhard HH, Stossel TP. et al. The macrophage alphaMbeta2 integrin alphaM lectin domain mediates the phagocytosis of chilled platelets. J Biol Chem 2005; 280: 18025-18032.
  • 33 Lewandrowski U, Moebius J, Walter U. et al. Elucidation of N-glycosylation sites on human platelet proteins: A glycoproteomic approach. Mol Cell Proteomics 2006; 5: 226-233.
  • 34 Kaji H, Saito H, Yamauchi Y. et al. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 2003; 21: 667-672.
  • 35 Hagglund P, Bunkenborg J, Elortza F. et al. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 2004; 3: 556-566.
  • 36 Zhang H, Li XJ, Martin DB. et al. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 2003; 21: 660-666.
  • 37 Gevaert K, van Damme P, Ghesquiere B. et al. Protein processing and other modifications analyzed by diagonal peptide chromatography. Biochim Biophys Acta 2006; 1764: 1801-1810.
  • 38 Von Mering C, Huynen M, Jaeggi D. et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 2003; 31: 258-261.