Hamostaseologie 2007; 27(04): 247-250
DOI: 10.1055/s-0037-1617089
Original article
Schattauer GmbH

Koagulatorische Aktivität der Thrombozyten

Coagulation activity of platelets
A. J. Reininger
1   Abt. Transfusionsmedizin und Hämostaseologie, Labor für Immungenetik und Molekulare Diagnostik, Klinikum der Universität München
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
27. Dezember 2017 (online)

Zusammenfassung

Hämostase ist die konzertierte Aktion von Blutkomponenten, um Blutverlust bei Verletzung von Blutgefäßen zu verhindern. Thrombose stellt die Kehrseite dieses physiologischen Prozesses dar, d. h., fehlgeleitet läuft eine hämostatische Reaktion an einer krankhaft veränderten Gefäßwand ab. Durch hämodynamische Kräfte werden die Thrombozyten in eine wandnahe Grenzschicht gedrängt und strömen entlang des Endothels auf der Suche nach Defekten. Wird eine Verletzungsstelle entdeckt, kommt es zur sofortigen Anlagerung der Thrombozyten, die mit der initialen Abbremsung und Adhäsion durch Glykoprotein(GP)-Ibα-Rezeptorbindung an von-Willebrand-Faktor (VWF) beginnt. GPIb benötigt keine Stimulierung im Gegensatz zu den nachfolgend durch „outside-in“ und „inside-out signalling“ aktivierten weiteren Rezeptoren wie Integrin αIIbβ3 (GPIIb/IIIa), Integrin α2β1, GP VI. Letztere binden an ihre entsprechenden Liganden wie VWF, Fibrinogen, Kollagen und andere subendotheliale Proteine. An dem ersten Rasen haftender Thrombozyten kommt es durch VWF vermittelt zu weiterer transienter Plättchenanlagerung, die durch Fibrinogenbrückenbildung zwischen Integrin-αIIbβ3-Rezeptoren auf benachbarten Plättchen gefestigt wird. Solche Aggregate stellen eine große Masse an prokoagulatorischen Membranen dar, an deren Oberflächen Gerinnungsfaktoren komplexiert und aktiviert werden. Damit läuft die Fibrinpolymerisation um ein Vielfaches beschleunigt ab. Zusätzlich besitzen Thrombozyten mRNA zur schnellen Produktion von TF (tissue factor), dem effektivsten Trigger der extrinsischen Gerinnung. Die entstandenen Fibrinfasern stabilisieren die Thrombozytenaggregate gegen Abriss durch Scherkräfte. Aus Thrombozyten unter hohen Scherraten durch GPIb-VWF-Interaktion entstandene Mikropartikel weisen ebenfalls aktivierte Membranen auf, wodurch es in Koagulationstests zu einer Verkürzung der Gerinnungszeit kommt. Somit scheinen Thrombozyten und thrombozytäre Mikropartikel nicht nur bei der Fokussierung der hämostatischen Antwort auf die Verletzungsregion sondern auch bei der Initiierung und Beschleunigung der nachfolgenden Gerinnung eine wesentliche Rolle zu spielen.

Summary

Haemostasis is the concerted action of blood components aimed at prevention of blood loss after vessel injury. Thrombosis is the other side of the coin, a misled physiological process, i.e. a haemostatic reaction occurring at a diseased vessel wall. Haemodynamic forces enrich platelets in a fluid boundary layer adjacent to the vessel wall where they flow along the endothelium scanning it for defects. Once the platelets detect an injury they immediately adhere – a process beginning with initial deceleration and attachment via glykoprotein (GP) Ibα receptor-binding to immobilized von Willebrand factor (VWF). The GPIb receptor requires no stimulation. This is in contrast to subsequently interacting receptors such as integrin αIIbβ3 (GPIIb/IIIa), integrin α2β1, and GP VI, which are activated via outsidein and inside-out signalling. The latter receptors bind to their respective ligands: VWF, fibrinogen, collagen and other subendothelial proteins. Upon the first layer of adherent platelets additional accrual of platelets is transient when mediated by VWF, but is then stabilized by fibrinogen bridging integrin αIIbβ3 receptors on neighboring platelets. Such aggregates present a large mass of procoagulant membranes, the surface of which serves for complexation and activation of clotting factors. Thereby fibrin polymerization is accelerated manyfold. In addition, platelets contain mRNA for fast production of tissue factor, the most effective trigger of extrinsic coagulation. The formed fibrin fibers stabilize the platelet aggregates against detachment by shear forces. A shortened clotting time probably due to activated membranes was also found with microparticles generated at high shear rates through GPIb-VWF-interaction. Thus, platelets and platelet derived microparticles seem to play an important role not only in focussing the haemostatic response to the region of injury but also in initiating and accelerating the subsequent clotting reaction.

 
  • Literatur

  • 1 Back LD, Radbill JR, Crawford DW. Analysis of pulsatile, viscous blood flow through diseased coronary arteries of man. J Biomech 1977; 10: 339-353.
  • 2 Strony J, Beaudoin A, Brands D. et al. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. Am J Physiol 1993; 265: H1787-H1796.
  • 3 Mailhac A, Badimon JJ, Fallon JT. et al. Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets. Circulation 1994; 90: 988-996.
  • 4 Carr RT, Xiao J. Plasma skimming in vascular trees: numerical estimates of symmetry recovery lengths. Microcirculation 1995; 2: 345-353.
  • 5 Gaehtgens P. Distribution of flow and red cell flux in the microcirculation. Scand J Clin Lab Invest (Suppl) 1981; 156: 83-87.
  • 6 Perkkio J, Wurzinger LJ, Schmid-Schonbein H. Plasma and platelet skimming at T-junctions. Thromb Res 1987; 45: 517-526.
  • 7 Karnis A, Goldsmith HL, Mason SG. Axial migration of particles in Poiseuille flow. Nature 1963; 200: 159-160.
  • 8 Goldsmith HL, Turitto VT. Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report – Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb Haemost 1986; 55: 415-435.
  • 9 Goldsmith HL, Cokelet G, Gaehtgens P. Robin Fahraeus: Evolution of his concepts cardiovascular physiology. Am J Physiol 1989; 257: H1005-H1015.
  • 10 Siedlecki CA, Lestini BJ, Kottke-Marchant KK. et al. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood 1996; 88: 2939-2950.
  • 11 Schneider SW, Nuschele S, Wixforth A. et al. Shear- induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci USA 2007; 104: 7899-7903.
  • 12 Mayadas TN, Wagner DD. Von Willebrand factor biosynthesis and processing. Ann NY Acad Sci 1991; 614: 153-166.
  • 13 Wagner DD. Cell biology of von Willebrand factor. Ann Rev Cell Biol 1990; 6: 217-246.
  • 14 Harrison RL, McKee PA. Estrogen stimulates von Willebrand factor production by cultured endothelial cells. Blood 1984; 63: 657-664.
  • 15 Cramer EM, Breton-Gorius J, Beesley JE. et al. Ultrastructural demonstration of tubular inclusions coinciding with von Willebrand factor in pig megakaryocytes. Blood 1988; 71: 1533-1538.
  • 16 Fernandez MF, Ginsberg MH, Ruggeri ZM. et al. Multimeric structure of platelet factor VIII/von Willebrand factor: the presence of larger multimers and their reassociation with thrombin-stimulated platelets. Blood 1982; 60: 1132-1138.
  • 17 Ruggeri ZM, Mannucci PM, Lombardi R. et al. Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: implications for pathophysiology and therapy of von Willebrand’s disease subtypes. Blood 1982; 59: 1272-1278.
  • 18 Koutts J, Walsh PN, Plow EF. et al. Active release of human platelet factor VIII-related antigen by adenosine diphosphate, collagen, and thrombin. J Clin Invest 1978; 62: 1255-1263.
  • 19 Kato K, Kanaji T, Russell S. et al. The contribution of glycoprotein VI to stable platelet adhesion and thrombus formation illustrated by targeted gene deletion. Blood 2003; 102: 1701-1707.
  • 20 Reininger AJ, Heijnen HF, Schumann H. et al. Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood 2006; 107: 3537-3545.
  • 21 Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84: 289-297.
  • 22 Ruggeri ZM, Bader R, De ML. Glanzmann thrombasthenia: deficient binding of von Willebrand factor to thrombin-stimulated platelets. Proc Natl Acad Sci USA 1982; 79: 6038-6041.
  • 23 Ruggeri ZM, De ML, Gatti L. et al. Platelets have more than one binding site for von Willebrand factor. J Clin Invest 1983; 72: 1-12.
  • 24 Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998; 94: 657-666.
  • 25 Clemetson KJ, Clemetson JM. Platelet collagen receptors. Thromb Haemost 2001; 86: 189-197.
  • 26 Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor?. Blood 2003; 102: 449-461.
  • 27 Ruggeri ZM, Dent JA, Saldivas E. Contribution of distinct adhesive interactions to platelet aggregation in flowing blood. Blood 1999; 94: 172-178.
  • 28 Donadelli R, Orje JN, Capoferri C. et al. Size regulation of von Willebrand factor-mediated platelet thrombi by ADAMTS13 in flowing blood. Blood 2006; 107: 1943-1950.
  • 29 Ruggeri ZM, Orje JN, Habermann R. et al. Activation- independent platelet adhesion and aggregation under elevated shear stress. Blood 2006; 108: 1903-1910.
  • 30 Schwertz H, Tolley ND, Foulks JM. et al. Signaldependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med 2006; 203: 2433-2440.
  • 31 Ribes JA, Francis CW. Multimer size dependence of von Willebrand factor binding to crosslinked or noncrosslinked fibrin. Blood 1990; 75: 1460-1465.
  • 32 Hada M, Kaminski M, Bockenstedt P. et al. Covalent crosslinking of von Willebrand factor to fibrin. Blood 1986; 68: 95-101.
  • 33 Loscalzo J, Inbal A, Handin RI. Von Willebrand protein facilitates platelet incorporation in polymerizing fibrin. J Clin Invest 1986; 78: 1112-1119.
  • 34 Hantgan RR, Hindriks G, Taylor RG. et al. Glycoprotein Ib, von Willebrand factor, and glycoprotein IIb: IIIa are all involved in platelet adhesion to fibrin in flowing whole blood. Blood 1990; 76: 345-353.
  • 35 Muller I, Klocke A, Alex M. et al. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. FASEB J 2003; 17: 476-478.
  • 36 Holme PA, Orvim U, Hamers MJAG. et al. Shearinduced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol 1997; 17: 646-653.