Hamostaseologie 2010; 30(01): 10-16
DOI: 10.1055/s-0037-1617143
Review
Schattauer GmbH

The coagulant response in sepsis and inflammation

Die Gerinnungsreaktion bei Sepsis und Entzündung
M. Levi
Department of Medicine and Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
› Author Affiliations
Further Information

Publication History





Publication Date:
29 December 2017 (online)

Summary

Critically ill patients often have systemic activation of both inflammation and coagulation. Increasing evidence points to an extensive cross-talk between these two systems, whereby inflammation not only leads to activation of coagulation, but coagulation also considerably affects inflammatory activity. The intricate relationship between inflammation and coagulation may have major consequences for the pathogenesis of microvascular failure and subsequent multiple organ failure, as a result of severe infection and the associated systemic inflammatory response. Molecular pathways that contribute to inflammation-induced activation of coagulation have been precisely identified. Activation of the coagulation system and ensuing thrombin generation is dependent on an inter-leukin-6-induced expression of tissue factor on activated mononuclear cells and endothelial cells and is insufficiently counteracted by tissue factor pathway inhibitor. Simultaneously, endothelial-bound anticoagulant mechanisms, in particular the protein C system and the antithrombin system, are shut-off by pro-inflammatory cytokines. Modulation of inflammatory activity by activation of coagulation also occurs by various mechanisms. Activated coagulation proteases, such as the tissue factor-factor VIIa complex, factor Xa and thrombin can bind to protease-activated receptors on various cells and the ensuing intracellular signaling leads to increased production of pro-inflammatory cytokines and chemo kines. Physiological anticoagulants can modulate inflammatory activity as well. Increasing knowledge on the various mechanisms underlying activation of inflammation and coagulation may lead to better (adjunctive) management strategies in critically ill patients.

Zusammenfassung

Bei intensivpflichtigen Patienten kommt es oft zu einer systemischen Aktivierung von Entzün-dung und Koagulation. Zunehmend finden sich Hinweise auf eine weitreichende Wechselwirkung zwischen beiden Systemen, wonach die Entzündung nicht nur zu einer Aktivierung der Koagulation führt, sondern die Koagulation auch erheblich die Entzündungsaktivität beeinflusst. Die komplexe Beziehung zwischen Entzündung und Koagulation könnte bedeutende Konsequenzen für die Pathogenese von mikrovaskulärer Störung und anschließendem Multiorganversagen haben, die als Folge einer schweren Infektion und der damit verbundenen systemischen Entzündungsantwort auftreten. Molekulare Signalwege, die zu einer entzündungsbedingten Aktivierung der Koagulation beitragen, wurden bereits exakt identifiziert. Die Aktivierung des Gerinnungs-systems und die daraus folgende Bildung von Thrombin hängt von einer durch Interleukin-6 induzierten Expression des Gewebefaktors auf aktivierten mononukleären und endothelialen Zellen ab. Der Gewebefaktorinhibitor wirkt diesem Mechanismus nur unzureichend entgegen. Gleichzeitig werden endothelial gebundene Antikoagulationsmechanismen, insbesondere das Protein-C-System und das Antithrombin-System, durch proinflammatorische Zytokine abgeschaltet. Für die Regulie-rung der Entzündungsaktivität durch Aktivie-rung der Koagulation sind ebenfalls verschiedene Mechanismen verantwortlich. Aktivierte Gerinnungsproteasen wie der GewebefaktorFaktor-VIIa-Komplex, Faktor Xa und Thrombin können an proteaseaktivierte Rezeptoren auf verschiedenen Zellen binden und die anschließende intrazelluläre Signalübertragung führt zu einer verstärkten Bildung proinflammatorischer Zytokine und Chemokine. Physiologische Antikoagulanzien können die Entzündungsaktivität ebenfalls regulieren. Ein besseres Verständnis für die verschiedenen Mechanismen, die der Aktivierung von Entzün-dung und Koagulation zugrunde liegen, könnte zur Entwicklung besserer (zusätzlicher) Behandlungsstrategien für intensivpflichtige Patienten führen.

 
  • References

  • 1 Levi M, Opal SM. Coagulation abnormalities in critically ill patients. Crit Care 2006; 10: 222.
  • 2 Levi M. Disseminated intravascular coagulation. Crit Care Med 2007; 35: 2191-2195.
  • 3 Levi M, ten Cate H. Disseminated intravascular coagulation. N Engl J Med 1999; 341: 586-592.
  • 4 Opal SM, Esmon CT. Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care 2003; 7: 23-38.
  • 5 Libby P, Aikawa M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat Med 2002; 8: 1257-1262.
  • 6 Van der Poll T, Levi M, Hack CE. et al. Elimination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees. J Exp Med 1994; 179: 1253-1259.
  • 7 Van Deventer SJ, Buller HR, ten Cate JW, Aarden LA, Hack CE, Sturk A. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 1990; 76: 2520-2526.
  • 8 Boermeester MA, van Leeuwen P, Coyle SM. et al. Interleukin-1 blockade attenuates mediator release and dysregulation of the hemostatic mechanism during human sepsis. Arch Surg 1995; 130: 739-748.
  • 9 Aird WC. Vascular bed-specific hemostasis: role of endothelium in sepsis pathogenesis. Crit Care Med 2001; 29: S28-S34.
  • 10 Levi M, Keller TT, van Gorp E, ten Cate H. Infection and inflammation and the coagulation system. Cardio vasc Res 2003; 60: 26-39.
  • 11 Esmon CT. The regulation of natural anticoagulant pathways. Science 1987; 235: 1348-1352.
  • 12 Levi M, van der Poll T, ten Cate H. Tissue factor in infection and severe inflammation. Semin Thromb Hemost 2006; 32: 33-39.
  • 13 Taylor FBJ, Chang A, Ruf W. et al. Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock 1991; 33: 127-134.
  • 14 Levi M, ten Cate H, Bauer KA. et al. Inhibition of endotoxin-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpanzees. J Clin Invest 1994; 93: 114-120.
  • 15 Levi M, van der Poll T, ten Cate H, van Deventer SJ. The cytokine-mediated imbalance between coagulant and anticoagulant mechanisms in sepsis and endotoxaemia. Eur J Clin Invest 1997; 27: 3-9.
  • 16 Osterud B, Rao LV, Olsen JO. Induction of tissue factor expression in whole blood – lack of evidence for the presence of tissue factor expression on granulocytes. Thromb Haemost 2000; 83: 861-867.
  • 17 Franco RF, de Jonge E, Dekkers PE. et al. The in vivo kinetics of tissue factor messenger RNA expression during human endotoxemia: relationship with activation of coagulation. Blood 2000; 96: 554-559.
  • 18 Rauch U, Bonderman D, Bohrmann B. et al. Transfer of tissue factor from leukocytes to platelets is mediated by CD15 and tissue factor. Blood 2000; 96: 170-175.
  • 19 Osterud B, Bjorklid E. Sources of tissue factor. Semin Thromb Hemost 2006; 32: 11-23.
  • 20 Furie B, Furie BC. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med 2004; 10: 171-178.
  • 21 Neumann FJ, Marx N, Gawaz M. et al. Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets. Circulation 1997; 95: 2387-2394.
  • 22 Mileno MD, Margolis NH, Clark BD. et al. Coagulation of whole blood stimulates interleukin-1 beta gene expression. J Infect Dis 1995; 172: 308-311.
  • 23 Jones A, Geczy CL. Thrombin and factor Xa enhance the production of interleukin-1. Immunology 1990; 71: 236-241.
  • 24 Johnson K, Choi Y, DeGroot E. et al. Potential mechanisms for a proinflammatory vascular cytokine response to coagulation activation. J Immunol 1998; 160: 5130-5135.
  • 25 Sower LE, Froelich CJ, Carney DH. et al. Thrombin induces IL-6 production in fibroblasts and epithelial cells. Evidence for the involvement of the seven-transmembrane domain (STD) receptor for alpha-thrombin. J Immunol 1995; 155: 895-901.
  • 26 Van der Poll T, de Jonge E, Levi M. Regulatory role of cytokines in disseminated intravascular coagulation. Semin Thromb Hemost 2001; 27: 639-651.
  • 27 De Jonge E, Friederich PW, Levi M, van der Poll T. Activation of coagulation by administration of recombinant factor VIIa elcicits interleukin-6 and interleukin-8 release in healthy humen subjects. Clin Diagn Lab Immunol 2003; 10: 495-497.
  • 28 Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000; 407: 258-264.
  • 29 Camerer E, Cornelissen I, Kataoka H. et al. Roles of protease-activated receptors in a mouse model of endotoxemia. Blood 2006; 107: 3912-3921.
  • 30 Slofstra SH, Bijlsma MF, Groot AP. et al. Protease-activated receptor-4 inhibition protects from multiorgan failure in a murine model of systemic inflammation. Blood 2007; 110: 3176-3182.
  • 31 Sevastos J, Kennedy SE, Davis DR. et al. Tissue factor deficiency and PAR-1 deficiency are protective against renal ischemia reperfusion injury. Blood 2007; 109: 577-583.
  • 32 Levi M, van der Poll T. The role of natural anticoagulants in the pathogenesis and management of systemic activation of coagulation and inflammation in critically ill patients. Semin Thromb Hemost 2008; 34: 459-468.
  • 33 Esmon CT. Role of coagulation inhibitors in inflammation. Thromb Haemost 2001; 86: 51-56.
  • 34 Levi M, de Jonge E, van der Poll T. Rationale for restoration of physiological anticoagulant pathways in patients with sepsis and disseminated intravascular coagulation. Crit Care Med 2001; 29 (Suppl. 07) S90-S94.
  • 35 Esmon CT. The endothelial cell protein C receptor. Thromb Haemost 2000; 83: 639-643.
  • 36 Perez-Casal M, Downey C, Fukudome K. et al. Activated protein C induces the release of microparticle-associated endothelial protein C receptor. Blood 2005; 105: 1515-1522.
  • 37 Mesters RM, Helterbrand J, Utterback BG. et al. Prognostic value of protein C concentrations in neutropenic patients at high risk of severe septic complications. Crit Care Med 2000; 28: 2209-2216.
  • 38 Vary TC, Kimball SR. Regulation of hepatic protein synthesis in chronic inflammation and sepsis. Am J Physiol 1992; 262: C445-C452.
  • 39 Nawroth PP, Stern DM. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med 1986; 163: 740-745.
  • 40 Faust SN, Levin M, Harrison OB. et al. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med 2001; 345: 408-416.
  • 41 Taylor FBJ, Stearns-Kurosawa DJ, Kurosawa S. et al. The endothelial cell protein C receptor aids in host defense against Escherichia coli sepsis. Blood 2000; 95: 1680-1686.
  • 42 De Pont AC, Bakhtiari K, Hutten BA. et al. Endotoxaemia induces resistance to activated protein C in healthy humans. Br J Haematol 2006; 134: 213-219.
  • 43 Levi M. Antithrombin in sepsis revisited. Crit Care 2005; 9: 624-625.
  • 44 Levi M, van der Poll T, Buller HR. Bidirectional relation between inflammation and coagulation. Circulation 2004; 109: 2698-2704.
  • 45 Kobayashi M, Shimada K, Ozawa T. Human recombinant interleukin-1 beta- and tumor necrosis factor alpha-mediated suppression of heparin-like compounds on cultured porcine aortic endothelial cells. J Cell Physiol 1990; 144: 383-390.
  • 46 De Jonge E, Dekkers PE, Creasey AA. et al. Tissue factor pathway inhibitor (TFPI) dose-dependently inhibits coagulation activation without influencing the fibrinolytic and cytokine response during human endotoxemia. Blood 2000; 95: 1124-1129.
  • 47 Creasey AA, Chang AC, Feigen L. et al. Tissue factor pathway inhibitor reduces mortality from Escherichia coli septic shock. J Clin Invest 1993; 91: 2850-2856.
  • 48 Taylor FBJ, Chang A, Esmon CT. et al. Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon. J Clin Invest 1987; 79: 918-925.
  • 49 Murakami K, Okajima K, Uchiba M. et al. Activated protein C attenuates endotoxin-induced pulmonary vascular injury by inhibiting activated leukocytes in rats. Blood 1996; 87: 642-647.
  • 50 Hancock WW, Tsuchida A, Hau H. et al. The anticoagulants protein C and protein S display potent antiinflammatory and immunosuppressive effects relevant to transplant biology and therapy. Transplantation Proceedings 1992; 24: 2302-2303.
  • 51 White B, Schmidt M, Murphy C. et al. Activated protein C inhibits lipopolysaccharide-induced nuclear translocation of nuclear factor kappaB (NF-kappaB) and tumour necrosis factor alpha (TNF-alpha) production in the THP-1 monocytic cell line. Br J Haematol 2000; 110: 130-134.
  • 52 Levi M, Dorffler-Melly J, Reitsma PH. et al. Aggravation of endotoxin-induced disseminated intravascular coagulation and cytokine activation in heterozygous protein C deficient mice. Blood 2003; 101: 4823-4827.
  • 53 Esmon CT. New mechanisms for vascular control of inflammation mediated by natural anticoagulant proteins. J Exp Med 2002; 196: 561-564.
  • 54 Hancock WW, Grey ST, Hau L. et al. Binding of activated protein C to a specific receptor on human mononuclear phagocytes inhibits intracellular calcium signaling and monocyte-dependent proliferative responses. Transplantation 1995; 60: 1525-1532.
  • 55 Riewald M, Petrovan RJ, Donner A. et al. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 2002; 296: 1880-1882.
  • 56 Ludeman MJ, Kataoka H, Srinivasan Y. et al. PAR1 cleavage and signaling in response to activated protein C and thrombin. J Biol Chem 2005; 280: 13122-13128.
  • 57 Feistritzer C, Sturn DH, Kaneider NC. et al. Endothelial protein C receptor-dependent inhibition of human eosinophil chemotaxis by protein C. J Allergy Clin Immunol 2003; 112: 375-381.
  • 58 Sturn DH, Kaneider NC, Feistritzer C. et al. Expression and function of the endothelial protein C receptor in human neutrophils. Blood 2003; 102: 1499-1505.
  • 59 Cheng T, Liu D, Griffin JH. et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 2003; 9: 338-342.
  • 60 Roemisch J, Gray E, Hoffmann JN, Wiedermann CJ. Antithrombin: a new look at the actions of a serine protease inhibitor. Blood Coagul Fibrinolysis 2002; 13: 657-670.
  • 61 Opal SM. Interactions between coagulation and inflammation. Scand J Infect Dis 2003; 35: 545-554.
  • 62 Mizutani A, Okajima K, Uchiba M. et al. Antithrombin reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation through promotion of prostacyclin production. Blood 2003; 101: 3029-3036.
  • 63 Uchiba M, Okajima K, Murakami K. Effects of various doses of antithrombin III on endotoxin-induced endothelial cell injury and coagulation abnormalities in rats. Thromb Res 1998; 89: 233-241.
  • 64 Levi M. The diagnosis of disseminated intravascular coagulation made easy. Neth J Med 2007; 65: 366-367.
  • 65 Bakhtiari K, Meijers JC, de Jonge E, Levi M. Prospective validation of the international society of thrombosis and maemostasis scoring system for disseminated intravascular coagulation. Crit Care Med 2004; 32: 2416-2421.
  • 66 Bernard GR, Vincent JL, Laterre PF. et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344: 699-709.
  • 67 Vincent JL, Angus DC, Artigas A. et al. Effects of drotrecogin alfa (activated) on organ dysfunction in the PROWESS trial. Crit Care Med 2003; 31: 834-840.
  • 68 Dhainaut JF, Yan SB, Joyce DE. et al. Treatment effects of drotrecogin alfa (activated) in patients with severe sepsis with or without overt disseminated intravascular coagulation. J Thromb Haemost 2004; 2: 1924-1933.
  • 69 Abraham E, Laterre PF, Garg R. et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med 2005; 353: 1332-1341.
  • 70 Dellinger RP, Levy MM, Carlet JM. et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008; 36: 296-327.
  • 71 Levi M. Activated protein C in sepsis: a critical review. Curr Opin Hematol 2008; 15: 481-486.
  • 72 Wiedermann CJ, Kaneider NC. A meta-analysis of controlled trials of recombinant human activated protein C therapy in patients with sepsis. BMC Emerg Med 2005; 5: 7-17.
  • 73 Marti-Carvajal A, Salanti G, Cardona AF. Human recombinant activated protein C for severe sepsis. Cochrane Database Syst Rev 2007; CD004388.
  • 74 Barie PS. „All in“ for a huge pot: the PROWESS-SHOCK trial for refractory septic shock. Surg Infect (Larchmt ) 2007; 8: 491-494.
  • 75 Levi M, ten Cate H, van der Poll T. Disseminated intravascular coagulation: State of the art. Thromb Haemost 1999; 82: 695-705.
  • 76 Warren BL, Eid A, Singer P. et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 2001; 286: 1869-1878.
  • 77 Kienast J, Juers M, Wiedermann CJ. et al. Treatment effects of high-dose antithrombin without concomitant heparin in patients with severe sepsis with or without disseminated intravascular coagulation. J Thromb Haemost 2006; 4: 90-97.