Arthritis und Rheuma 2015; 35(04): 207-211
DOI: 10.1055/s-0037-1618375
Osteologie
Schattauer GmbH

Mechanoadaptation des Knochens

Grundlagen und Anforderungen an die BewegungstherapieMechanoadaptation of bonePrinciples and requirements for physical therapy
J. Rittweger
1   Institut für Luft- und Raumfahrtmedizin, Abteilung Weltraumphysiologie, Deutsches Zentrum für Luft- und Raumfahrt, Köln
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
27. Dezember 2017 (online)

Zusammenfassung

Anpassung des Knochens an variable Kräfte ist über die gesamte menschliche Lebensspanne möglich. Als Erklärungsmodell bietet sich die Mechanostat-Theorie an, gemäß welcher die Knochenverformung als Regelgröße für strukturelle Anpassung des Knochens dient. Bettlägerigkeit führt zu raschem Knochenabbau aus den Beinen, der durch Krafttraining mit oder ohne Ganzkörpervibration verhindert werden kann. Rehabilitation von durch Immobilisierung hervorgerufenen Knochenverlusten ist bei vollständiger Rehabilitation der Bewegungsfähigkeit möglich und vergleichsweise einfach zu erreichen. Trotzdem ist die Primärprävention aus osteologischer Sicht vorzuziehen. Alters- und Geschlechtseffekte zur Mechanoadaptation sind beim Menschen nur spärlich untersucht worden. Jüngste Ergebnisse aus der Grundlagenforschung deuten auf eine besonders große Wirksamkeit von Torsionsverformungen als Stimulus für den Knochen hin. Aufgrund dieser Ergebnisse kann derzeit für die Bewegungstherapie gegen Knochenabbau empfohlen werden dass 1) Kräfte nahe der Maximalkraft erzeugt werden sollen, dass 2) mindestens einmal täglich geübt wird, und dass 3) die Muskulatur mit in die Bewegungstherapie einbezogen wird.

Summary

Bone adaptation to variant forces is possible throughout the human lifespan. The mechanostat theory states that bone deformations are the central entity that governs structural adaptations of our bones. Bed rest leads to rapid bone losses from the legs, and this can be effectively counteracted by resistive exercise with or without superimposed vibrations. Rehabilitation of bone losses incurred during bed rest is possible and can be achieved comparatively easily when the physical capabilities are also fully recovered. Notwithstanding, primary prevention of bed rest-induced bone losses is preferable from an osteological point of view. Relatively little is known about effects of age and gender upon bone’s mechano-adaptive capabilities. Recent results suggest that torsional deformations may constitute a particularly powerful stimulus for bone accrual. On basis of these results, it can currently be suggested for an effective physical therapy against bone loss that 1) it should entail bone loading near maximal forces, 2) these effective loads should be applied on a daily basis, and 3) that the musculature should also be involved in the exercise regimen.

 
  • Literatur

  • 1 Bacabac RG, Smit TH, Mullender MG. et al Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun 2004; 315 (04) 823.
  • 2 Baecker N, Frings-Meuthen P, Heer M. et al Effects of vibration training on bone metabolism: results from a short-term bed rest study. Eur J Appl Physiol 2012; 112 (05) 1741-1750. [Epub 2011/09/07]
  • 3 Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19 (02) 179-192. [Epub 2013/02/08]
  • 4 Belavy DL, Baecker N, Armbrecht G. et al. Serum sclerostin and DKK1 in relation to exercise against bone loss in experimental bed rest. J Bone Miner Metab 2015 [Epub 2015/06/10]
  • 5 Belavy DL, Beller G, Armbrecht G. et al Evidence for an additional effect of whole-body vibration above resistive exercise alone in preventing bone loss during prolonged bed rest. Osteoporos Int 2011; 22 (05) 1581-1591. [Epub 2010/09/04]
  • 6 Beller G, Belavy DL, Sun L. et al WISE-2005. bed-rest induced changes in bone mineral density in women during 60 days simulated microgravity. Bone 2011; 49 (04) 858-866. [Epub 2011/07/05]
  • 7 Bogenschutz ED, Smith HD, Warden SJ. Midhumerus adaptation in fast-pitch softballers and the effect of throwing mechanics. Med Sci Sports Exerc 2011; 43 (09) 1698-1706. [Epub 2011/02/12]
  • 8 Buehlmeier et al. [eingereicht]
  • 9 Ducos et al. [in Vorbereitung]
  • 10 Frings-Meuthen P, Boehme G, Liphardt AM. et al Sclerostin and DKK1 levels during 14 and 21 days of bed rest in healthy young men. J Musculoskelet Neuronal Interact 2013; 13 (01) 45-52. [Epub 2013/03/01]
  • 11 Frost HM. Bone “mass“ and the “mechanostat“: a proposal. Anat Rec 1987; 219 (01) 1-9.
  • 12 Galilei G. Discorsi e dimonstrazioni matematiche, intorno a due nuove scienze attentanti alla meccanica ed a movimenti locali. Madison: University of Wisconsin Press; 1638
  • 13 Guzelsu N, Regimbal RL. The origin of electrokinetic potentials in bone tissue: the organic phase. J Biomech 1990; 23 (07) 661-672.
  • 14 Ireland A, Degens H, Maffulli N, Rittweger J. Tennis Service Stroke Benefits Humerus Bone: Is Torsion the Cause?. Calcif Tissue Int 2015; 97 (02) 193-198. [Epub 2015/04/22]
  • 15 Ireland A, Korhonen M, Heinonen A. et al Side-to-side differences in bone strength in master jumpers and sprinters. J Musculoskelet Neuronal Interact 2011; 11 (04) 298-305. [Epub 2011/12/02]
  • 16 Ireland A, Maden-Wilkinson T, Ganse B. et al Effects of age and starting age upon side asymmetry in the arms of veteran tennis players: a cross-sectional study. Osteoporos Int 2014; 25 (04) 1389-1400. [Epub 2014/02/18]
  • 17 Ireland A, Maden-Wilkinson T, McPhee J. et al Upper limb muscle-bone asymmetries and bone adaptation in elite youth tennis players. Med Sci Sports Exerc 2013; 45 (09) 1749-1758. [Epub 2013/03/12]
  • 18 Jiang JX, Cheng B. Mechanical stimulation of gap junctions in bone osteocytes is mediated by prostaglandin E2. Cell communication & adhesion 2001; 8 4-6 283-288.
  • 19 Kroger H, Huopio J, Honkanen R. et al Prediction of fracture risk using axial bone mineral density in a perimenopausal population: a prospective study. J Bone Miner Res 1995; 10 (02) 302.
  • 20 Lang TF, Leblanc AD, Evans HJ, Lu Y. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res 2006; 21 (08) 1224-1230.
  • 21 LeBlanc A, Schneider V. Can the adult skeleton recover lost bone?. Exp Gerontol 1991; 26 2-3 189.
  • 22 Mittag U, Kriechbaumer A, Bartsch M, Rittweger J. Form follows function: a computational simulation exercise on bone shape forming and conservation. J Musculoskelet Neuronal Interact 2015; 15 (02) 215-226. [Epub 2015/06/03]
  • 23 Mulder E, Clèment G, Linnarsson D. et al Musculoskeletal effects of bed rest with and without locomotion replacement training. Eur J Appl Physiol 2015; 115 (04) 727-738.
  • 24 Owan I, Burr DB, Turner CH. et al Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol 1997; 273 3 Pt 1 C810.
  • 25 Pavy-Le Traon A, Heer M, Narici MV. et al From space to Earth: advances in human physiology from 20 years of bed rest studies (1986-2006). Eur J Appl Physiol 2007; 101 (02) 143-194.
  • 26 Riggs BL, Melton LJ, Robb RA. et al A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 2008; 23 (02) 205-214.
  • 27 Rittweger J. Physiological Targets of Artificial Gravity: Adaptive Processes in Bone. In Clement G, Bukley A. eds. Artificial Gravity. Berlin: Springer 2007; 191-231.
  • 28 Rittweger J, Belavy D, Hunek P. et al Highly demanding resistive exercise program is tolerated during 56 days of strict bed rest. Int J Sports Med 2006; 27 (07) 553-559.
  • 29 Rittweger J, Beller G, Armbrecht G. et al Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone 2010; 46: 137-147.
  • 30 Rittweger J, Felsenberg D. Recovery of muscle atrophy and bone loss from 90 days bed rest: Results from a one-year follow-up. Bone 2009; 44 (02) 214-224.
  • 31 Rittweger J, Frost HM, Schiessl H. et al Muscle atrophy and bone loss after 90 days of bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 2005; 36 (06) 1019-1029.
  • 32 Robling AG, Niziolek PJ, Baldridge LA. et al Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 2008; 283 (09) 5866-5875.
  • 33 Rubin C, Gross T, Qin YX. et al Differentiation of the bone-tissue remodeling response to axial and torsional loading in the turkey ulna. J Bone Joint Surg Am 1996; 78 (10) 1523-1533. [Epub 1996/10/01]
  • 34 Sawakami K, Robling AG, Pitner ND. et al The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. Biol Chem 2006; 281 (33) 23698-23711.
  • 35 Shackelford LC, LeBlanc AD, Driscoll TB. et al Resistance exercise as a countermeasure to disuse-induced bone loss. J Appl Physiol 2004; 97 (01) 119-129.
  • 36 Sibonga JD, Evans HJ, Sung HG. et al Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone 2007; 41 (06) 973-978.
  • 37 Thompson DA. On Growth and Form. Cambridge: Cambridge University Press; 1917
  • 38 Vico L, Collet P, Guignandon A. et al Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 2000; 355 09215 1607-1611.
  • 39 Weber T, Ducos M, Mulder E. et al The specific role of gravitational accelerations for arterial adaptations. J Appl Physiol 01985 2013; 114 (03) 387-393. [Epub 2012/12/12]
  • 40 Wolff J. Die Lehre von der functionellen Knochengestalt. Archiv für pathologische Anatomie und Physiologie 1899; 155: 256.
  • 41 Yang PF, Kriechbaumer A, Albracht K. et al On the relationship between tibia torsional deformation and regional muscle contractions in habitual human exercises in vivo. J Biomech 2015; 48 (03) 456-464. [Epub 2014/12/30]
  • 42 Yang PF, Sanno M, Ganse B. et al Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running. PLoS ONE 2014; 9 (04) e94525. [Epub 2014/04/16]
  • 43 Ziambaras K, Lecanda F, Steinberg TH, Civitelli R. Cyclic stretch enhances gap junctional communication between osteoblastic cells. J Bone Miner Res 1998; 13 (02) 218.