Adipositas - Ursachen, Folgeerkrankungen, Therapie 2014; 08(03): 159-162
DOI: 10.1055/s-0037-1618850
Übersichtsarbeit
Schattauer GmbH

„Du bist, was du isst”?

Neuronale Verarbeitung von Fett und Fettaroma„You are what you eat”?Neuronal processing of fat and fat aroma components
S. Frank
1   Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
,
A. Fritsche
2   Dept. of Internal Medicine IV, University Hospital, Tübingen, Germany
3   Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
4   German Center for Diabetes Research, Neuherberg, Germany
,
J. Hinrichs
5   Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
,
H. Preissl
1   Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
3   Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
4   German Center for Diabetes Research, Neuherberg, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
21. Dezember 2017 (online)

Zusammenfassung

Neurowissenschaftliche Studien zeigen, dass die Wahl sowie die Wahrnehmung unserer Speisen ein Ergebnis komplexer neuronaler Prozesse darstellt. Während hirngeschichtlich ältere Areale wie der Hypothalamus vorwiegend bei der Steuerung des Energiehaushalts eine zentrale Rolle spielen, sind auch gustatorisch/hedonische Areale bei der Wahl und Verarbeitung von Speisen von großer Bedeutung. In diesem Übersichtsartikel fassen wir Studien zusammen, die akute und langfristige Verarbeitung von Fett in der Nahrung mittels funktioneller Bildgebung untersuchten. Während sofort nach Aufnahme eines fetthaltigen Lebensmittels vor allem das Aroma, die Textur und der Fetteindruck zu unterschiedlichen neuronalen Antworten in zahlreichen Hirnarealen führen, ist die metabolische Reaktion auf eine tatsächlich fetthaltige Mahlzeit vor allem im homöostatischen System repräsentiert. Gleichzeitig scheint der Fettgehalt in der Nahrung die Interaktion zwischen dem homöostatischen und dem gustatorischen System zu mediieren. Fettassoziierte Aromastoffe scheinen sich dagegen primär in gustatorischen Arealen auszuwirken. Dies ist vermutlich auf unbewusste Lernprozesse zurückzuführen, über die die Wahrnehmung der Aromastoffe mit der tatsächlichen Aufnahme fetthaltiger Lebensmittel assoziiert ist.

Summary

Neuroscientific studies showed that the perception and the processing of food is a complex interaction of different neuronal systems. The main control region of energy homeostasis is the hypothalamus, however, gustatory/hedonic brain regions are also involved in neuronal food processing.

So far, only few brain imaging studies have investigated neuronal acute and long-term effects of fat in our food. Based on current available findings, we present data showing that fat ingestion leads to functional neuronal changes in the range of minutes to hours. But also pure taste induces neuronal activation differences. Therefore, acute neuronal fat processing is highly dependent on the pleasantness of the flavor and texture of the stimuli. The long-term metabolic effects are mainly represented in the homeostatic system. Since gustatory/hedonic areas are also influenced by the fat content, fat might be a modulator of the homeostatic and gustatory system. In a second part, first evidence of neuronal effects of fat aroma components will be addressed. Here, findings suggest that it might be possible to simulate fat-triggered sensations in the brain on the gustatory level by fat aroma, possibly by learned associations.

 
  • Literatur

  • 1 Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I. et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 2008; 359 (03) 229-241.
  • 2 Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohammed BS. et al. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 2003; 348 (21) 2082-2090.
  • 3 French S, Robinson T. Fats and food intake. Curr Opin Clin Nutr Metab Care 2003; 06 (06) 629-634.
  • 4 Neary MT, Batterham RL. Gaining new insights into food reward with functional neuroimaging. Forum Nutr 2010; 63: 152-163.
  • 5 Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437 7063 1257-1263.
  • 6 Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000; 404 6778 661-671.
  • 7 Berthoud HR. Metabolic and hedonic drives in the neural control of appetite: who is the boss?. Curr Opin Neurobiol 2011; 21 (06) 888-896.
  • 8 Berridge KC. ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav 2009; 97 (05) 537-550.
  • 9 Finlayson G, Arlotti A, Dalton M, King N, Blundell JE. Implicit wanting and explicit liking are markers for trait binge eating. A susceptible phenotype for overeating. Appetite 2011; 57 (03) 722-728.
  • 10 Berridge KC. Brain reward systems for food incentives and hedonics in normal appetite and eating disorder. In: Kirham TC, cooper SJ. (eds.) Progress in Brain Research. Academic Press; 2007: 191-216.
  • 11 Smeets PA, de Graaf C, Stafleu A, van Osch MJ, van der Grond J. Functional MRI of human hypothalamic responses following glucose ingestion. Neuroimage 2005; 24 (02) 363-368.
  • 12 Smeets PA, Vidarsdottir S, de Graaf C, Stafleu A, van Osch MJ, Viergever MA. et al. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion. Am J Physiol Endocrinol Metab 2007; 293 (03) E754-8.
  • 13 Smeets PA, de Graaf C, Stafleu A, van Osch MJ, van der Grond J. Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am J Clin Nutr 2005; 82 (05) 1011-1016.
  • 14 De Araujo IE, Rolls ET. Representation in the human brain of food texture and oral fat. The Journal of neuroscience : the official journal of the Society for Neuroscience 2004; 24 (12) 3086-3093.
  • 15 Grabenhorst F, Rolls ET, Parris BA, d’Souza AA. How the brain represents the reward value of fat in the mouth. Cerebral cortex 2010; 20 (05) 1082-1091.
  • 16 Eldeghaidy S, Marciani L, McGlone F, Hollowood T, Hort J, Head K. et al. The cortical response to the oral perception of fat emulsions and the effect of taster status. Journal of neurophysiology 2011; 105 (05) 2572-2581.
  • 17 Alonso BDC, Marciani L, Head K. et al. Functional magnetic resonance imaging assessment of the cortical representation of oral viscosity. J Texture Stud 2007; 38 (06) 725-737.
  • 18 Tzieropoulos H, Rytz A, Hudry J, le Coutre J. Dietary fat induces sustained reward response in the human brain without primary taste cortex discrimination. Frontiers in human neuroscience 2013; 07: 36.
  • 19 Grabenhorst F, Rolls ET. The representation of oral fat texture in the human somatosensory cortex. Human brain mapping 2014; 35 (06) 2521-2530.
  • 20 Frank S, Linder K, Kullmann S, Heni M, Ketterer C, Cavusoglu M. et al. Fat intake modulates cerebral blood flow in homeostatic and gustatory brain areas in humans. Am J Clin Nutr 2012; 95 (06) 1342-1349.
  • 21 Maljaars J, Peters HP, Masclee AM. The gastrointestinal tract: neuroendocrine regulation of satiety and food intake. Aliment Pharmacol Ther 2007; 26 (Suppl. 02) 241-250.
  • 22 Asrih M, Jornayvaz FR. Diets and nonalcoholic fatty liver disease: The good and the bad. Clin Nutr 2014; 33 (02) 186-190.
  • 23 Hatakeyama J, Davidson JM, Kant A, Koizumi T, Hayakawa F, Taylor AJ. Optimising aroma quality in curry sauce products using in vivo aroma release measurements. Food chemistry 2014; 157: 229-239.
  • 24 Garcia-Gonzalez DL, Tena N, Aparicio-Ruiz R, Aparicio R. Sensor responses to fat food aroma: a comprehensive study of dry-cured ham typicality. Talanta 2014; 120: 342-348.
  • 25 Garcia-Gonzalez DL, Vivancos J, Aparicio R. Mapping brain activity induced by olfaction of virgin olive oil aroma. J Agric Food Chem 2011; 59 (18) 10200-10210.
  • 26 Frank S, Linder K, Fritsche L, Hege MA, Kullmann S, Krzeminski A. et al. Olive oil aroma extract modulates cerebral blood flow in gustatory brain areas in humans. Am J Clin Nutr 2013; 98 (05) 1360-1366.