Osteologie 2016; 25(03): 186-192
DOI: 10.1055/s-0037-1619013
Muskuloskelettale Radiologie
Schattauer GmbH

Bildgebung der diabetischen Knochenerkrankung

Aktuelle ForschungsergebnisseImaging of diabetic bone diseaseCurrent Research Update
T. M. Link
1   Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
,
U. Heilmeier
1   Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
› Author Affiliations
Further Information

Publication History

eingereicht: 05 March 2016

angenommen: 09 April 2016

Publication Date:
21 December 2017 (online)

Zusammenfassung

Patienten mit Typ-2-Diabetes mellitus (T2DM) weisen eine erhöhte Frakturinzidenz auf und dies trotz normaler oder erhöhter, mittels DXA gemessener Knochendichtewerte. Die Gründe für die erhöhte Frakturanfälligkeit des diabetischen Knochens sind noch nicht geklärt. In den vergangenen zehn Jahren wurden neue bildgebende Verfahren entwickelt, die die Knochenqualität und -struktur von Patienten mit T2DM charakterisieren und vielversprechende Ergebnisse zeigen. Eines dieser Verfahren ist die sogenannte hochauflösende quantitative Computertomografie (HR-pQCT), die es erlaubt, die kortikale und trabekuläre Struktur peripherer Knochen zu analysieren. Klinische Studien zeigten, dass die Porosität des kortikalen Knochens bei T2DM-Patienten mit Frakturen erhöht ist. Die Magnetresonanzspektroskopie des Knochenmarks ist eine weitere bildgebende Technik, die in klinischen Studien mit einer erhöhten Prävalenz von Frakturen assoziiert war. Des Weiteren wurden der quantitative Knochenultraschall und der “Trabecular Bone Score” (DXA) zur Charakterisierung der Knochenqualität bei T2DM-Patienten eingesetzt. Dieser Übersichtsartikel fasst aktuelle Studien zur bildgebenden, quantitativen Diagnostik der diabetischen Knochenerkrankung zusammen und zeigt, dass neue Verfahren vielversprechende Ansätze zur besseren Beurteilung des diabetischen Frakturrisikos liefern.

Summary

Patients with type 2 diabetes mellitus (T2DM) have a higher incidence of fragility fractures despite normal or even elevated bone mineral density (BMD) measured with DXA. Recent clinical studies have shown that bone structure and composition may explain the increased risk of fragility fractures in T2DM and provide information on bone strength beyond this provided by BMD. High resolution quantitative computed tomography (HR-pQCT) is a new technology to investigate bone quality analyzing cortical and trabecular bone structure. Using HR-pQCT differences in cortical porosity at the distal radius and tibia between T2DM patients with and without fragility fractures were found. It has been suggested that cortical porosity may serve as a new imaging biomarker for increased fragility in T2DM. In addition abnormalities of bone marrow fat using MR spectroscopy of the spine were demonstrated in T2DM patients: vertebral bone marrow fat content correlated significantly with HbA1c and visceral adipose tissue in T2DM patients and decreased unsaturated bone marrow lipids were found to be associated with T2DM and fragility fractures. Other imaging technologies that have been used to assess bone structure and texture in diabetic bone disease are high resolution MRI, quantitative ultrasound and trabecular bone score derived from DXA images. This chapter will summarize results from recent studies analyzing bone quality in patients with diabetic bone disease and will demonstrate how novel imaging technologies may better characterize fracture risk in these patients.

 
  • Literatur

  • 1 Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. American journal of epidemiology 2007; 166 (05) 495-505.
  • 2 Schwartz AV, Sellmeyer DE, Ensrud KE. et al. Older women with diabetes have an increased risk of fracture: a prospective study. The Journal of clinical endocrinology and metabolism 2001; 86 (01) 32-38.
  • 3 Yamamoto M, Yamaguchi T, Yamauchi M. et al. Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. Journal of bone and mineral research 2009; 24 (04) 702-709 doi:10.1359/ jbmr.081207.
  • 4 Hernandez RK, Do TP, Critchlow CW. et al. Patient-related risk factors for fracture-healing complications in the United Kingdom General Practice Research Database. Acta orthopaedica 2012; 83 (06) 653-660 doi:10.3109/17453674.2012.747054.
  • 5 Giangregorio LM, Leslie WD, Lix LM. et al. FRAX underestimates fracture risk in patients with diabetes. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2012; 27 (02) 301-308 doi:10.1002/jbmr.556.
  • 6 Schwartz AV, Vittinghoff E, Bauer DC. et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. Jama 2011; 305 (21) 2184-2192.
  • 7 Schwartz AV, Sellmeyer DE. Diabetes, fracture, and bone fragility. Current osteoporosis reports 2007; 05 (03) 105-111.
  • 8 Melton 3rd LJ, Riggs BL, Leibson CL. et al. A bone structural basis for fracture risk in diabetes. The Journal of clinical endocrinology and metabolism 2008; 93 (12) 4804-4809.
  • 9 Heilmeier U, Carpenter DR, Patsch JM. et al. Volumetric femoral BMD, bone geometry, and serum sclerostin levels differ between type 2 diabetic postmenopausal women with and without fragility fractures. Osteoporosis international 2015; 26 (04) 1283-1293 doi:10.1007/s00198–014–2988–7.
  • 10 Schwartz AV, Hillier TA, Sellmeyer DE. et al. Older women with diabetes have a higher risk of falls: a prospective study. Diabetes care 2002; 25 (10) 1749-1754.
  • 11 Farr JN, Khosla S. Determinants of bone strength and quality in diabetes mellitus in humans. Bone 2016; 82: 28-34 doi:10.1016/j.bone.2015.07.027.
  • 12 Lester G. Bone quality: summary of NIH/ASBMR meeting. Journal of musculoskeletal & neuronal interactions 2005; 05 (04) 309.
  • 13 Burghardt AJ, Issever AS, Schwartz AV. et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. The Journal of clinical endocrinology and metabolism 2010; 95 (11) 5045-5055 doi:10.1210/jc.2010–0226.
  • 14 Patsch JM, Burghardt AJ, Yap SP. et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. Journal of bone and mineral research 2013; 28 (02) 313-324 doi:10.1002/jbmr.1763.
  • 15 Shanbhogue VV, Hansen S, Frost M. et al. Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease. Eur J Endocrinol 2015; 174 (02) 115-124 doi:10.1530/eje-15–0860.
  • 16 Paccou J, Ward KA, Jameson KA. et al. Bone Microarchitecture in Men and Women with Diabetes: The Importance of Cortical Porosity. Calcified tissue international. 2015 doi:10.1007/ s00223–015–0100–8.
  • 17 Patsch JM, Li X, Baum T. et al. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. Journal of bone and mineral research 2013; 28 (08) 1721-1728 doi:10.1002/jbmr.1950.
  • 18 Baum T, Yap SP, Karampinos DC. et al. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus?. J Magn Reson Imaging 2012; 35 (01) 117-1124 doi:10.1002/jmri.22757.
  • 19 Dhaliwal R, Cibula D, Ghosh C. et al. Bone quality assessment in type 2 diabetes mellitus. Osteoporosis international 2014; 25 (07) 1969-1973 doi:10.1007/s00198–014–2704–7.
  • 20 Leslie WD, Aubry-Rozier B, Lamy O, Hans D. TBS (trabecular bone score) and diabetes-related fracture risk. The Journal of clinical endocrinology and metabolism 2013; 98 (02) 602-609 doi:10.1210/jc.2012–3118.
  • 21 Zhukouskaya VV, Ellen-Vainicher C, Gaudio A. et al. The utility of lumbar spine trabecular bone score and femoral neck bone mineral density for identifying asymptomatic vertebral fractures in well-compensated type 2 diabetic patients. Osteoporosis international 2016; 27 (01) 49-56 doi:10.1007/s00198–015–3212–0.
  • 22 Nishiyama KK, Shane E. Clinical imaging of bone microarchitecture with HR-pQCT. Current osteoporosis reports 2013; 11 (02) 147-155 doi:10.1007/s11914–013–0142–7.
  • 23 Blake GM, Naeem M, Boutros M. Comparison of effective dose to children and adults from dual X-ray absorptiometry examinations. Bone 2006; 38 (06) 935-942 doi:10.1016/j.bone.2005.11.007.
  • 24 Shu A, Yin MT, Stein E. et al. Bone structure and turnover in type 2 diabetes mellitus. Osteoporosis international 2012; 23 (02) 635-641 doi:10.1007/s00198–011–1595–0.
  • 25 Griffith JF, Yeung DK, Antonio GE. et al. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 2005; 236 (03) 945-951 doi:10.1148/radiol.2363041425.
  • 26 Li X, Kuo D, Schafer AL. et al. Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. JMRI 2011; 33 (04) 974-979 doi:10.1002/jmri.22489.
  • 27 Yeung DK, Griffith JF, Antonio GE. et al. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. JMRI 2005; 22 (02) 279-285 doi:10.1002/jmri.20367.
  • 28 Li X, Shet K, Rodriguez JP. et al. Unsaturation Level Decreased in Bone Marrow Lipids of Postmenopausal Women with Low Bone Density Using High Resolution HRMAS NMR. ASBMR. 2012 October 12–15, 20912; Minneapolis, MN2012.
  • 29 Link T, Lotter A, Beyer F. et al. Post-Cardiac Transplantation Changes in Calcaneal Trabecular Bone Structure: A Magnetic Resonance Imaging Study. Radiology 2000; 217: 855-862.
  • 30 Benito M, Gomberg B, Wehrli FW. et al. Deterioration of trabecular architecture in hypogonadal men. The Journal of clinical endocrinology and metabolism 2003; 88 (04) 1497-1502 doi:10.1210/jc.2002–021429.
  • 31 Chang G, Honig S, Brown R. et al. Finite element analysis applied to 3-T MR imaging of proximal femur microarchitecture: lower bone strength in patients with fragility fractures compared with control subjects. Radiology 2014; 272 (02) 464-474 doi:10.1148/radiol.14131926.
  • 32 Pritchard JM, Giangregorio LM, Atkinson SA. et al. Association of larger holes in the trabecular bone at the distal radius in postmenopausal women with type 2 diabetes mellitus compared to controls. Arthritis care & research 2012; 64 (01) 83-91.
  • 33 Pritchard JM, Giangregorio LM, Atkinson SA. et al. Changes in trabecular bone microarchitecture in postmenopausal women with and without type 2 diabetes: a two year longitudinal study. BMC musculoskeletal disorders 2013; 14: 114 doi:10.1186/ 1471–2474–14–114.
  • 34 Gluer CC, Wu CY, Jergas M, Goldstein SA, Genant HK. Three quantitative ultrasound parameters reflect bone structure. Calcified tissue international 1994; 55 (01) 46-52.
  • 35 Guglielmi G, Adams J, Link TM. Quantitative ultrasound in the assessment of skeletal status. European radiology 2009; 19 (08) 1837-1848 doi:10.1007/s00330–009–1354–1.
  • 36 Gluer CC, Eastell R, Reid DM. et al. Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS Study. Journal of bone and mineral research 2004; 19 (05) 782-793 doi:10.1359/jbmr.040304.
  • 37 Gonnelli S, Cepollaro C, Gennari L. et al. Quantitative ultrasound and dual-energy X-ray absorptiometry in the prediction of fragility fracture in men. Osteoporosis international 2005; 16 (08) 963-968 doi:10.1007/s00198–004–1771–6.
  • 38 Gonnelli S, Cepollaro C, Montagnani A. et al. Heel ultrasonography in monitoring alendronate therapy: a four-year longitudinal study. Osteoporosis international 2002; 13 (05) 415-421 doi:10.1007/ s001980200048.
  • 39 Yamaguchi T, Yamamoto M, Kanazawa I. et al. Quantitative ultrasound and vertebral fractures in patients with type 2 diabetes. J Bone Miner Metab 2011; 29 (05) 626-632 doi:10.1007/ s00774–011–0265–9.
  • 40 Patel S, Hyer S, Tweed K. et al. Risk factors for fractures and falls in older women with type 2 diabetes mellitus. Calcified tissue international 2008; 82 (02) 87-91 doi:10.1007/s00223–007–9082–5.
  • 41 Bousson V, Bergot C, Sutter B. et al. Scientific Committee of the Groupe de Recherche et d’Information sur les O. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int 2012; 23 (05) 1489-1501 doi:10.1007/s00198–011–1824–6.
  • 42 Link TM. Screening: Assessing bone structure in the prediction of osteoporotic fractures. Nature reviews 2012; 08 (01) 6-8 doi:10.1038/nrrheum. 2011.174.
  • 43 Hans D, Goertzen AL, Krieg MA, Leslie WD. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 2011; 26 (11) 2762-2769 doi:10.1002/jbmr.499.
  • 44 Leslie WD, Aubry-Rozier B, Lamy O. et al. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab 2013; 98 (02) 602-609 doi:10.1210/jc.2012–3118.