Hamostaseologie 2010; 30(03): 150-155
DOI: 10.1055/s-0037-1619048
Review
Schattauer GmbH

Von Willebrand disease and Weibel-Palade bodies

Von-Willebrand-Erkrankung und Weibel-Palade-Körperchen
J. W. Wang
1   Einthoven Laboratory for Experimental Vascular Medicine
2   Department of Thrombosis and Haemostasis, Leiden University Medical Center, Leiden, The Netherlands
,
J. Eikenboom
1   Einthoven Laboratory for Experimental Vascular Medicine
2   Department of Thrombosis and Haemostasis, Leiden University Medical Center, Leiden, The Netherlands
› Institutsangaben
J.W. Wang is financially supported by a grant from the China Scholarship Council (2007U21083).
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
26. Dezember 2017 (online)

Summary

Von Willebrand factor (VWF) is a pivotal haemostatic protein mediating platelet adhesion to injured endothelium and carrying coagulation factor VIII (FVIII) in the circulation to protect it from premature clearance. Apart from the roles in haemostasis, VWF drives the formation of the endothelial cell specific Weibel-Palade bodies (WPBs), which serve as a regulated storage of VWF and other thrombotic and inflammatory factors. Defects in VWF could lead to the bleeding disorder von Willebrand disease (VWD).

Extensive studies have shown that several mutations identified in VWD patients cause an intracellular retention of VWF. However, the effects of such mutations on the formation and function of its storage organelle are largely unknown. This review gives an overview on the role of VWF in WPB biogenesis and summarizes the limited data on the WPBs formed by VWD-causing mutant VWF.

Zusammenfassung

Der Von-Willebrand-Faktor (VWF) ist ein hämostatisches Schlüsselprotein, das die Plätt-chenadhäsion im verletzten Endothel vermittelt und im Blutkreislauf als Trägerprotein für den Gerinnungsfaktor VIII (FVIII) dient, um diesen vor dem vorzeitigen Abbau zu schüt-zen. Neben dieser Rolle in der Hämostase fördert der VWF außerdem die Bildung der für Endothelzellen spezifischen Weibel-Palade-Körperchen (WPK), die als geregelter Speicher für VWF und andere thrombotische und inflammatorische Faktoren dienen. Defekte im VWF können eine Gerinnungsstörung, das Von-Willebrand-Syndrom (VWS), auslösen. In umfassenden Studien wurde nachgewie-sen, dass verschiedene Mutationen, die bei Patienten mit VWS identifiziert wurden, eine intrazelluläre Retention des VWF verursachen können. Die Auswirkungen dieser Mutationen auf die Bildung und Funktion seiner Speicherorganellen sind jedoch weitgehend unbe-kannt. Dieser Übersichtsartikel gibt einen Überblick über die Rolle des VWF bei der Biogenese der WPK und fasst die wenigen Daten zu solchen WPK zusammen, die durch für das VWS verantwortliche VWF-Mutanten gebildet werden.

 
  • References

  • 1 Allen S, Abuzenadah AM, Blagg JL. et al. Two novel type 2N von Willebrand disease-causing mutations that result in defective factor VIII binding, multimerization, and secretion of von Willebrand factor. Blood 2000; 95: 2000-2007.
  • 2 Allen S, Abuzenadah AM, Hinks J. et al. A novel von Willebrand disease-causing mutation (Arg273Trp) in the von Willebrand factor propeptide that results in defective multimerization and secretion. Blood 2000; 96: 560-568.
  • 3 Allen S, Goodeve AC, Peake IR. et al. Endoplasmic reticulum retention and prolonged association of a von Willebrand’s disease-causing von Willebrand factor variant with ERp57 and calnexin. Biochem Biophys Res Commun 2001; 280: 448-453.
  • 4 Berber E, James PD, Hough C. et al. An assessment of the pathogenic significance of the R924Q von Willebrand factor substitution. J Thromb Haemost 2009; 07: 1672-1679.
  • 5 Booyse FM, Quarfoot AJ, Chediak J. et al. Characterization and properties of cultured human von Willebrand umbilical vein endothelial cells. Blood 1981; 58: 788-796.
  • 6 Casonato A, Cattini MG, Soldera C. et al. A new L1446P mutation is responsible for impaired von Willebrand factor synthesis, structure, and function. J Lab Clin Med 2004; 144: 254-259.
  • 7 Casonato A, Sartorello F, Cattini MG. et al. An Arg760Cys mutation in the consensus sequence of the von Willebrand factor propeptide cleavage site is responsible for a new von Willebrand disease variant. Blood 2003; 101: 151-156.
  • 8 Casonato A, Sartorello F, Pontara E. et al. A novel von Willebrand factor mutation (I1372S) associated with type 2B-like von Willebrand disease: an elusive phenotype and a difficult diagnosis. Thromb Haemost 2007; 98: 1182-1187.
  • 9 Cramer EM, Meyer D, le Menn R. et al. Eccentric localization of von Willebrand factor in an internal structure of platelet alpha-granule resembling that of Weibel-Palade bodies. Blood 1985; 66: 710-713.
  • 10 Cumming A, Grundy P, Keeney S. et al. An investigation of the von Willebrand factor genotype in UK patients diagnosed to have type 1 von Willebrand disease. Thromb Haemost 2006; 96: 630-641.
  • 11 de Groot PG, Federici AB, de Boer HC. et al. von Willebrand factor synthesized by endothelial cells from a patient with type IIB von Willebrand disease supports platelet adhesion normally but has an increased affinity for platelets. Proc Natl Acad Sci USA 1989; 86: 3793-3797.
  • 12 Denis CV, Andre P, Saffaripour S. et al. Defect in regulated secretion of P-selectin affects leukocyte recruitment in von Willebrand factor-deficient mice. Proc Natl Acad Sci USA 2001; 98: 4072-4077.
  • 13 Dong JF, Moake JL, Nolasco L. et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 2002; 100: 4033-4039.
  • 14 Eikenboom J, Hilbert L, Ribba AS. et al. Expression of 14 von Willebrand factor mutations identified in patients with type 1 von Willebrand disease from the MCMDM-1VWD study. J Thromb Haemost 2009; 07: 1304-1312.
  • 15 Eikenboom JC. Congenital von Willebrand disease type 3: clinical manifestations, pathophysiology and molecular biology. Best Pract Res Clin Haematol 2001; 14: 365-379.
  • 16 Eikenboom JC, Matsushita T, Reitsma PH. et al. Dominant type 1 von Willebrand disease caused by mutated cysteine residues in the D3 domain of von Willebrand factor. Blood 1996; 88: 2433-2441.
  • 17 Ewenstein BM, Inbal A, Pober JS. et al. Molecular studies of von Willebrand disease: reduced von Willebrand factor biosynthesis, storage, and release in endothelial cells derived from patients with type I von Willebrand disease. Blood 1990; 75: 1466-1472.
  • 18 Federici AB, de Groot PG, Moia M. et al. Type I von Willebrand disease, subtype ‘platelet low’: decreased platelet adhesion can be explained by low synthesis of von Willebrand factor in endothelial cells. Br J Haematol 1993; 83: 88-93.
  • 19 Gebrane-Younes J, Drouet L, Caen JP. et al. Heterogeneous distribution of Weibel-Palade bodies and von Willebrand factor along the porcine vascular tree. Am J Pathol 1991; 139: 1471-1484.
  • 20 Giblin JP, Hewlett LJ, Hannah MJ. Basal secretion of von Willebrand factor from human endothelial cells. Blood 2008; 112: 957-964.
  • 21 Gill JC, Endres-Brooks J, Bauer PJ. et al. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood 1987; 69: 1691-1695.
  • 22 Goodeve A, Eikenboom J, Castaman G. et al. Phenotype and genotype of a cohort of families historically diagnosed with type 1 von Willebrand disease in the European study, Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease (MCMDM-1VWD). Blood 2007; 109: 112-121.
  • 23 Haberichter SL, Allmann AM, Jozwiak MA. et al. Genetic alteration of the D2 domain abolishes von Willebrand factor multimerization and trafficking into storage. J Thromb Haemost 2009; 07: 641-650.
  • 24 Haberichter SL, Balistreri M, Christopherson P. et al. Assay of the von Willebrand factor (VWF) pro-peptide to identify patients with type 1 von Willebrand disease with decreased VWF survival. Blood 2006; 108: 3344-3351.
  • 25 Haberichter SL, Castaman G, Budde U. et al. Identification of type 1 von Willebrand disease patients with reduced von Willebrand factor survival by assay of the VWF propeptide in the European study: molecular and clinical markers for the diagnosis and management of type 1 VWD (MCMDM-1VWD). Blood 2008; 111: 4979-4985.
  • 26 Haberichter SL, Merricks EP, Fahs SA. et al. Re-establishment of VWF-dependent Weibel-Palade bodies in VWD endothelial cells. Blood 2005; 105: 145-152.
  • 27 Hampton RY. ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 2002; 14: 476-482.
  • 28 Hommais A, Stepanian A, Fressinaud E. et al. Mutations C1157F and C1234W of von Willebrand factor cause intracellular retention with defective multimerization and secretion. J Thromb Haemost 2006; 04: 148-157.
  • 29 Hop C, Guilliatt A, Daly M. et al. Assembly of multimeric von Willebrand factor directs sorting of P-selectin. Arterioscler Thromb Vasc Biol 2000; 20: 1763-1768.
  • 30 Huang RH, Wang Y, Roth R. et al. Assembly of Weibel-Palade body-like tubules from N-terminal domains of von Willebrand factor. Proc Natl Acad Sci USA 2008; 105: 482-487.
  • 31 James PD, Notley C, Hegadorn C. et al. The muta-tional spectrum of type 1 von Willebrand disease: Results from a Canadian cohort study. Blood 2007; 109: 145-154.
  • 32 Jeanneau C, Avner P, Sultan Y. Use of monoclonal antibody and colloidal gold in E.M. localization of von Willebrand factor in megakaryocytes and platelets. Cell Biol Int Rep 1984; 08: 841-848.
  • 33 Journet AM, Saffaripour S, Cramer EM. et al. Von Willebrand factor storage requires intact pro -sequence cleavage site. Eur J Cell Biol 1993; 60: 31-41.
  • 34 Kroner PA, Foster PA, Fahs SA. et al. The defective interaction between von Willebrand factor and factor VIII in a patient with type 1 von Willebrand disease is caused by substitution of Arg19 and His54 in mature von Willebrand factor. Blood 1996; 87: 1013-1021.
  • 35 Lenting PJ, Westein E, Terraube V. et al. An experimental model to study the in vivo survival of von Willebrand factor. Basic aspects and application to the R1205H mutation. J Biol Chem 2004; 279: 12102-12109.
  • 36 Levene RB, Booyse FM, Chediak J. et al. Expression of abnormal von Willebrand factor by endothelial cells from a patient with type IIA von Willebrand disease. Proc Natl Acad Sci USA 1987; 84: 6550-6554.
  • 37 Lowenstein CJ, Morrell CN, Yamakuchi M. Regulation of Weibel-Palade body exocytosis. Trends Cardiovasc Med 2005; 15: 302-308.
  • 38 Lyons SE, Bruck ME, Bowie EJ. et al. Impaired intracellular transport produced by a subset of type IIA von Willebrand disease mutations. J Biol Chem 1992; 267: 4424-4430.
  • 39 Metcalf DJ, Nightingale TD, Zenner HL. et al. Formation and function of Weibel-Palade bodies. J Cell Sci 2008; 121: 19-27.
  • 40 Michaux G, Abbitt KB, Collinson LM. et al. The physiological function of von Willebrand’s factor depends on its tubular storage in endothelial Weibel-Palade bodies. Dev Cell 2006; 10: 223-232.
  • 41 Michaux G, Hewlett LJ, Messenger SL. et al. Analysis of intracellular storage and regulated secretion of 3 von Willebrand disease-causing variants of von Willebrand factor. Blood 2003; 102: 2452-2458.
  • 42 Morelli VM, de Visser MC, van Tilburg NH. et al. ABO blood group genotypes, plasma von Willebrand factor levels and loading of von Willebrand factor with A and B antigens. Thromb Haemost 2007; 97: 534-541.
  • 43 Nilsson IM, Blomback M, Jorpes E. et al. Von Willebrand’s disease and its correction with human plasma fraction 1-0. Acta Med Scand 1957; 159: 179-188.
  • 44 Rodeghiero F, Castaman G, Dini E. Epidemiological investigation of the prevalence of von Willebrand’s disease. Blood 1987; 69: 454-459.
  • 45 Rondaij MG, Bierings R, Kragt A. et al. Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol 2006; 26: 1002-1007.
  • 46 Rosenberg JB, Foster PA, Kaufman RJ. et al. Intracellular trafficking of factor VIII to von Willebrand factor storage granules. J Clin Invest 1998; 101: 613-624.
  • 47 Rosenberg JB, Haberichter SL, Jozwiak MA. et al. The role of the D1 domain of the von Willebrand factor propeptide in multimerization of VWF. Blood 2002; 100: 1699-1706.
  • 48 Royo T, Martinez-Gonzalez J, Vilahur G. et al. Differential intracellular trafficking of von Willebrand factor (VWF) and VWF propeptide in porcine endothelial cells lacking Weibel-Palade bodies and in human endothelial cells. Atherosclerosis 2003; 167: 55-63.
  • 49 Sadler JE. Biochemistry and genetics of von Willebrand factor. Ann Rev Biochem 1998; 67: 395-424.
  • 50 Sadler JE, Budde U, Eikenboom JC. et al. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost 2006; 04: 2103-2114.
  • 51 Schneppenheim R, Brassard J, Krey S. et al. Defective dimerization of von Willebrand factor subunits due to a Cys -> Arg mutation in type IID von Willebr and disease. Proc Natl Acad Sci USA 1996; 93: 3581-3586.
  • 52 Schooten CJ, Tjernberg P, Westein E. et al. Cysteinemutations in von Willebrand factor associated with increased clearance. J Thromb Haemost 2005; 03: 2228-2237.
  • 53 Sporn LA, Marder VJ, Wagner DD. Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell 1986; 46: 185-190.
  • 54 Sporn LA, Marder VJ, Wagner DD. von Willebrand factor released from Weibel-Palade bodies binds more avidly to extracellular matrix than that secreted constitutively. Blood 1987; 69: 1531-1534.
  • 55 Tjernberg P, Castaman G, Vos HL. et al. Homo -zygous C2362F von Willebrand factor induces intracellular retention of mutant von Willebrand factor resulting in autosomal recessive severe von Willebrand disease. Br J Haematol 2006; 133: 409-418.
  • 56 Tjernberg P, Vos HL, Castaman G. et al. Dimerization and multimerization defects of von Willebrand factor due to mutated cysteine residues. J Thromb Haemost 2004; 02: 257-265.
  • 57 Tjernberg P, Vos HL, Spaargaren-van Riel CC. et al. Differential effects of the loss of intrachain- versus interchain-disulfide bonds in the cystine-knot domain of von Willebrand factor on the clinical phenotype of von Willebrand disease. Thromb Haemost 2006; 96: 717-724.
  • 58 Turner N, Nolasco L, Dong JF. et al. ADAMTS-13 cleaves long von Willebrand factor multimeric strings anchored to endothelial cells in the absence of flow, platelets or conformation-altering chemicals. J Thromb Haemost 2009; 07: 229-232.
  • 59 Valentijn KM, Valentijn JA, Jansen KA. et al. A new look at Weibel-Palade body structure in endothelial cells using electron tomography. J Struct Biol 2008; 161: 447-458.
  • 60 Van den Biggelaar M, Bouwens EA, Kootstra NA. et al. Storage and regulated secretion of factor VIII in blood outgrowth endothelial cells. Haematologica 2009; 94: 670-678.
  • 61 Van den Biggelaar M, Meijer AB, Voorberg J. et al. Intracellular cotrafficking of factor VIII and von Willebrand factor type 2N variants to storage organelles. Blood 2009; 113: 3102-3109.
  • 62 Vischer UM, Wagner DD. Von Willebrand factor proteolytic processing and multimerization precede the formation of Weibel-Palade bodies. Blood 1994; 83: 3536-3544.
  • 63 Voorberg J, Fontijn R, Calafat J. et al. Biogenesis of von Willebrand factor-containing organelles in het-erologous transfected CV-1 cells. EMBO J 1993; 12: 749-758.
  • 64 Wagner DD. Cell biology of von Willebrand factor. Annu Rev Cell Biol 1990; 06: 217-246.
  • 65 Wagner DD, Mayadas T, Urban-Pickering M. et al. Inhibition of disulfide bonding of von Willebrand protein by monensin results in small, functionally defective multimers. J Cell Biol 1985; 101: 112-120.
  • 66 Wagner DD, Olmsted JB, Marder VJ. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol 1982; 95: 355-360.
  • 67 Wagner DD, Saffaripour S, Bonfanti R. et al. Induction of specific storage organelles by von Willebrand factor propolypeptide. Cell 1991; 64: 403-413.
  • 68 Weibel ER, Palade GE. New cytoplasmic components in arterial endothelia. J Cell Biol 1964; 23: 101-112.