Hamostaseologie 2010; 30(04): 203-206
DOI: 10.1055/s-0037-1619057
Review
Schattauer GmbH

Laboratory diagnosis of von Willebrand disease

Labordiagnostik des von-Willebrand-Syndroms
J. Patzke
1   Assay Development, Siemens Healthcare Diagnostics Products GmbH, Marburg, Germany
,
R. Schneppenheim
2   Department of Paediatric Haematology and Oncology, University Medical Center Hamburg Eppendorf, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
28. Dezember 2017 (online)

Summary

Over the last decade, considerable progress has been made in the laboratory diagnosis of VWD. Precise, sensitive and automated VWF : Ag assays became widely available. The VWF : RCo performance was improved to a certain degree. However, the sensitivity, precision and general availability of automated applications is not yet optimal. Nevertheless, this type of assay is still recognized as superior to other activity assays, e. g. VWF : CBA assays and antibody-binding “activity” assays, for the detection of defects in VWF function.

A decision limit of either 30 or 40 IU dl-1 VWF (VWF:RCo or VWF:Ag) is recommended for a diagnosis of type 1 VWD. Type 2 VWD can be differentiated from type 1 by calculating the VWF:RCo/VWF:Ag ratio.

Improved and easier to perform multimer analysis and genetic testing are beginning to facilitate the diagnosis of the VWD type 1, 2A, 2B, 2N, 2M or 3. Within type 1 or 2, a decreased VWF survival can be detected by the VWFpp assay and its ratio to VWF : Ag.

A new type of VWF activity assay, based on the binding of VWF to a GPIb⟨-fragment, has been developed. One assay variant does not need ristocetin as a cofactor anymore. The performance investigations presented so far are very promising. It is probable that these GPIb⟨-binding assays will detect functional VWF defects as the VWF : RCo assay, but are much more sensitive and precise. Fully automated applications on routine analyzers are expected to be commercialized soon.

Zusammenfassung

In den vergangenen 10 Jahren sind erhebliche Fortschritte in der Labordiagnostik des von-Willebrand-Syndroms (VWS) zu verzeichnen. Präzise, sensitive und automatisierte VWF : Ag-Teste sind verfügbar. Die Leistungsfähigkeit des VWF : RCo-Tests ist zu einem gewissen Maß verbessert worden, aber die Sensitivität, Präzision und die allgemeine Verfügbarkeit von automatisierten Testapplikationen sind noch suboptimal. Nach wie vor ist der VWF : RCo-Test anerkanntermaßen besser zur Erkennung funktionaler Defekte als andere Aktivitäts -teste, z. B. VWF : CBA-Test oder Antikörper-benutzende “Aktivitäts”-Teste.

Zur Diagnose des VWS vom Typ 1 wird jetzt eine Entscheidungsgrenze von 30 oder 40 IU dl-1 empfohlen (VWF : RCo oder VWF : Ag). Eine Differenzierung von Typ 1 und 2 erlaubt die der Ratio-Bildung VWF : RCo/VWF : Ag.

Eine verbesserte und vereinfachte Multimerenanalyse sowie die Gendiagnostik beginnen gerade, die Diagnose der VWS-Typen 1, 2A, 2B, 2M, 2N und 3 zu erleichtern. Innerhalb der Typen 1 oder 2 kann der VWFpp-Test mittels der Ratio-Bildung zu VWF : Ag eine verringerte Überlebenszeit von VWF detektieren. Ein neuer Typ eines VWF-Aktivitätstests wurde entwickelt. Er basiert auf der Bindung von VWF an ein GPIb⟨-Fragment. Eine Variante dieses Tests kann auf Ristocetin als Kofaktor verzichten. Die Testeigenschaften, die vorgestellt wurden, sind vielversprechend. Mit hoher Wahrscheinlichkeit wird dieser neue Test funktionelle VWF-Defekte ähnlich gut wie der VWF : RCo-Test erkennen, doch wesentlich präziser und sensitiver sein. Voraussichtlich sind bald vollautomatisierte Applikationen auf Routinegeräten verfügbar.

 
  • References

  • 1 Nichols WL, Hultin MB, James AH. et al. Von Willebrand disease (VWD): evidence-based diagnosis and management guidelines, the National Heart, Lung, and Blood Institute (NHLBI) Expert Panel report (USA). Haemophilia 2008; 14: 171-232.
  • 2 Favaloro EJ. Laboratory identification of von Willebrand disease: Technical and scientific perspectives. Semin Thromb Hemost 2006; 32: 456-471.
  • 3 Federici AB. Classification of inherited von Willebrand disease and implications in clinical practice. Thromb Res 2009; 124 (Suppl. 01) S2-S6.
  • 4 Domsch C, Calatzis A, Schramm W, Spannagl M. Parallel determination of ristocetin cofactor activity and von Willebrand factor antigen. 45. Jahrestagung der GTH, Düsseldorf. 2001 Poster 37.
  • 5 Strandberg K, Andersson K, Carlson M. et al. Evaluation of an automated assay for rapid analysis of von Willebrand ristocetin cofactor activity. J Thromb Haemost 2003; 01 (Suppl. 01) P1676.
  • 6 Strandberg K, Lethagen S, Andersson K. et al. Evaluation of a rapid automated assay for analysis of von Willebrand Ristocetin Cofactor Activity. Clin Appl Thromb Hemost 2006; 12: 61-67.
  • 7 Tosetto A, Rodeghiero R, Castaman G. et al. Impact of plasma von Willebrand factor levels in the diagnosis of type 1 von Willebrand disease: results from a multicenter European study (MCMDM-1VWD). J Thromb Haemost 2007; 05: 715-721.
  • 8 Favaloro EJ, Aboud M, Arthur C. Possibility of potential VWD misdiagnosis or misclassification using LIA technology and due to presence of rheumatoid factor. Am J Hematol 2001; 66: 53-56.
  • 9 Smith JM, Bowyer A, Storr J. et al. Comparison of a new rapid automated VWF:Activity assay with a manual agglutination VWF:RCo assay in screening for VWD. Presented at the 26th International Congress of the World Federation of Hemophilia. Bangkok: Thailand; Oct 17-21 2004
  • 10 Pinol M, Sales M, Costa M. et al. Evaluation of a new turbidimetric assay for von Willebrand factor activity useful in the general screening of von Willebrand disease. Haematologica 2007; 92: 712-713.
  • 11 De Vleeschauwer A, Devreese K. Comparison of a new automated von Willebrand factor activity assay with an aggregation von Willebrand ristocetin cofactor activity assay for the diagnosis of von Willebrand disease. Blood Coagul Fibrinol 2006; 17: 353-358.
  • 12 Salem RO, van Cott E. A new automated screening assay for the diagnosis of von Willebrand disease. Am J Clin Pathol 2007; 127: 730-735.
  • 13 Budde U, Pieconka A, Will K, Schneppenheim R. Laboratory testing for von Willebrand disease: Contribution of multimer analysis to diagnosis and classification. Semin Thromb Hemost 2006; 32: 514-521.
  • 14 Ott HW, Griesmacher A, Schnapka-Koepf M. et al. Analysis of von Willebrand factor multimers by simultaneous high- and low-resolution vertical SDS- agarose gel electrophoresis and Cy5-labeled antibody high-sensitivity fluorescence detection. Am J Clin Pathol 2010; 133: 322-330.
  • 15 Budde U, Schneppenheim R, Eikenboom J. et al. Detailed von Willebrand factor multimer analysis in patients with von Willebrand disease in the European study, molecular and clinical markers for the diagnosis and management of type 1 von Willebrand disease (MCMDM-1VWD). J Thromb Haemost 2008; 06: 762-771.
  • 16 Vanhoorelbeke K, Cauwenberghs N, Vauterin S. et al. A reliable and reproducible ELISA method to measure ristocetin cofactor activity of von Willebrand factor. Thromb Haemost 2000; 83: 107-113.
  • 17 Vanhoorelbeke K, Cauwenberghs N, Vandecasteele G. et al. A reliable von Willebrand factor: ristocetin cofactor enzyme-linked immunosorbent assay to differentiate between type 1 and type 2 von Willebrand disease. Semin Thromb Hemost 2002; 28: 161-166.
  • 18 Federici AB, Canciani MT, Forza I. et al. A sensitive ristocetin cofactor activity assay with recombinant glycoprotein Ibalpha for the diagnosis of patients with low von Willebrand factor levels. Haematologica 2004; 89: 77-85.
  • 19 Tous J, Barry RG, Arnout J. et al. New automated chemiluminescent VWF:Ag and VWF:RCo assays: preliminary analytical and clinical performance. J Thromb Haemost. 2009 07. (Suppl 2): PP-TH-625.
  • 20 Pinol M, Sanchez T, Sales M. et al. New automated ristocetin cofactor activity assay to distinguish type 1 and type 2 von Willebrand disease (VWD). J Thromb Haemost. 2009 07. (Suppl 2): PP-TH--635.
  • 21 Flood VH, Friedman KD, Gill JC. et al. Limitations of the ristocetin cofactor assay in measurement of von Willebrand factor function. J Thromb Haemost 2009; 07: 1832-1839.
  • 22 Schneppenheim R, Obser T, Budde U, Patzke J. Development of a new functional assay for von Willebrand factor binding to platelet GpIba that does not require Ristocetin. Hämostaseologie. 2010. 30: A28, FC4-05.
  • 23 Patzke J, Althaus H, Schneppenheim R. Development of a new particle enhanced agglutination VWF activity assay with no need of ristocetin. Hämostaseologie 2010; 30: P07-02.
  • 24 Patzke J, Althaus H, Budde U. et al. Evaluation of a new VWF activity assay based on GPIb α binding in the absence of ristocetin. Hämostaseologie 2010; 30: P07-03.
  • 25 Haberichter SL, Balistreri M, Christopherson P. et al. Assay of the von Willebrand factor (VWF) propeptide to identify patients with type 1 von Willebrand disease with decreased VWF survival. Blood 2006; 108: 3344-3351.
  • 26 Sztukowska M, Gallinaro L, Cattini MG. et al. Von Willebrand factor propeptide makes it easy to identify the shorter von Willebrand factor survival in patients with type 1 and type Vicenza von Willebrand disease. Br J Haematol 2008; 143: 107-114.
  • 27 Favaloro EJ. Genetic testing of von Willebrand disease: the case against. J Thromb Haemost 2010; 08: 6-12.
  • 28 Peake IR, Goodeve AC. Genetic testing of von Willebrand disease: the case for. J Thromb Haemost 2010; 08: 13-16.
  • 29 Goodeve A, Eikenboom J, Castaman G. et al. Phenotype and genotype of a cohort of families historically diagnosed with type 1 von Willebrand disease in the European study, Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease (MCMDM- 1VWD). Blood 2007; 109: 112-121.