RSS-Feed abonnieren
DOI: 10.1055/s-0037-1619519
Typ-2-Diabetes, Insulinresistenz und endotheliale Dysfunktion
Type 2 diabetes, insulin resistance and endothelial dysfunctionPublikationsverlauf
Publikationsdatum:
27. Dezember 2017 (online)
Zusammenfassung
Endotheliale Funktionsstörungen zeigen eine hohe Korrelation sowohl zu atherosklerotischen Gefäßerkrankungen als auch zu isoliert vorliegenden kardiovaskulären Risikofaktoren. Bei Patienten mit Diabetes mellitus, gestörter Glukosetoleranz und bereits bei normoglykämischen insulinresistenten Nachkommen von Typ-2-Diabetikern findet sich eine erhöhte Prävalenz endothelabhängiger Funktionsstörungen. Im Sinne antiatherosklerotischer Schutzmechanismen der Gefäßwand scheint vor allem der endothelabhängigen Stickoxid-(NO-)Produktion eine wesentliche Rolle zuzukommen. NO ist involviert in Schlüsselereignisse in der Pathogenese der Atherosklerose, wie z.B. Störungen der Vasotonusregulation, der Thrombozyten-Gefäßwand-Interaktion, der Monozytenadhäsion und der Proliferationshemmung der glatten Gefäßmuskulatur. Deshalb könnte die nachweisbare Reduktion der endothelialen NO-Bioverfügbarkeit bei Patienten mit Insulinresistenz zum beschleunigten Ablauf atherosklerotischer Gefäßveränderungen beitragen. Der Mangel an NO stellt am ehesten einen Summationseffekt aus metabolisch induzierter Hemmung der NO-Synthase-Aktivität (z.B. durch nicht veresterte Fettsäuren) und parallel beschleunigtem NO-Abbau durch oxidativen Stress dar. Die vermehrte Bildung reaktiver Sauerstoffverbindungen resultiert u.a. aus einer gesteigerten NAD(P)H-Oxidase-Aktivität, Interaktionen sog. »advanced glycosylated end products« (AGE) und einer Erhöhung der Aldose-Reduktaseaktivität bei Hyperglykämie mit einer Verarmung an NAD(P)H, einem Kosubstrat der NO-Synthese aus L-Arginin. Auf der anderen Seite lassen sich bei Diabetikern Störungen antioxidativer Abwehrsysteme nachweisen, wie z.B. im Sinne einer verminderten Superoxid-Dismutase-Aktivität. Somit entsteht bereits in der Phase des Prädiabetes ein Circulus vitiosus mit relevant pro-atherosklerotischem Potenzial. Interventionsstudien belegen eine potenzielle Reversibilität dieser funktionellen Gefäßschäden.
Summary
Endothelial dysfunction is highly correlated with vascular disease as well as with a cluster of cardiovascular risk factors. Patients with diabetes, pathological glucose tolerance and even insulin resistant normoglycemic first-degree relatives of patients with type 2 diabetes present a high prevalence of disturbed endothelial dependent functions. There is substantial evidence, that endothelium-derived nitric oxide (NO) plays here a major role regarding the antiatherosclerotic property of the vascular wall. NO is involved in key events in the pathogenesis of atherosclerotic disease, such as the regulation of the vascular tone, platelet-vessel wall interaction, monocyte adhesion and the inhibition of smooth muscle cell proliferation. Therefore reduced bioavailability of endothelium derived NO in patients with insulin resistance may contribute to the accelerated process of arteriosclerosis. The lack of NO seems to result from a combination of metabolically induced decrease of NO-synthase activity (e.g. by elevated levels of non-esterified free fatty acids) and over an inactivation of NO by oxidative stress. The enhanced generation of oxygen-derived free radicals is in part due to an increase in NAD(P)H-oxidase activity, interactions of advanced glycosylation end products (AGE) and a hyperglycemia induced increase in aldose reductase activity, leading to a further depletion of NAD(P)H, which is required for generation of NO from L-arginine. On the other side diabetes is associated with disturbed antioxidative defense mechanisms, such as reduced activity of superoxide dismutase. Thus already in the stage of “prediabetes” a vicious circle develops with a relevant proatherosclerotic impact. Recent intervention studies prove the potential reversibility of endothelial dysfunction.
-
Literatur
- 1 Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D. et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 1995; 26: 1235-41.
- 2 Avena R, Mitchell ME, Nylen ES, Curry KM, Sidawy AN. Insulin action enhancement normalizes brachial artery vasoactivity in patients with peripheral vascular disease and occult diabetes. J Vasc Surg 1998; 28: 1024-31.
- 3 Baldeweg SE, Coppack SW, Yudkin JS. Vascular reactivity in non-insulin dependent diabetic subjects: A measure of endothelial dysfunction?. Diabetologia 1998; (Suppl. 01) A309.
- 4 Balletshofer B, Rittig K, Enderle MD, Volk A, Maerker E, Pfohl M. et al. Disturbed flow-associated brachial artery dilation in glucose-tolerant, insulin-resistant first-degree relatives of subjects with type 2-diabetes. Diabetologia 1998; 41 (Suppl. 01) A313.
- 5 Balletshofer B, Rittig K, Enderle MD, Volk A, Maerker E, Rett K. et al. Endothelial dysfunction and intima-media thickness in »healthy« but insulin resistant first degree relatives of type 2 diabetics. Diabetologia 1999; Suppl: A120.
- 6 Balletshofer B, Rittig K, Volk A, Maerker E, Jacob S, Rett K. et al. Impaired nonesterified fatty acid suppression is associated with endothelial dysfunction in insulin resistant subjects. Horm Metab Res 2001; 33: 428-31.
- 7 Balletshofer BM, Rittig K, Enderle MD, Volk A, Maerker E, Jacob S. et al. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation 2000; 101: 1780-4.
- 8 Baron AD. Hemodynamic actions of insulin. Am J Physiol 1994; 267: E187-E202.
- 9 Baron AD. The coupling of glucose metabolism and perfusion in human skeletal muscle. The potential role of endothelium-derived nitric oxide. Diabetes 1996; 45 (Suppl. 01) S105-9.
- 10 Baron AD. Vascular reactivity. Am J Cardiol 1999; 84: 25J-27J.
- 11 Baron AD, Tarshoby M, Hook G, Lazaridis EN, Cronin J, Johnson A. et al. Interaction between insulin sensitivity and muscle perfusion on glucose uptake in human skeletal muscle: evidence for capillary recruitment. Diabetes 2000; 49: 768-74.
- 12 Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res 1998; 37: 586-600.
- 13 Bierhaus A, Ritz E, Nawroth PP. Expression of receptors for advanced glycation end-products in occlusive vascular and renal disease. Nephrol Dial Transplant 1996; 11 (Suppl. 05) 87-90.
- 14 Bierhaus A, Ziegler R, Nawroth PP. Molecular mechanisms of diabetic angiopathy – clues for innovative therapeutic interventions. Horm Res 1998; 50 (Suppl. 01) 1-5.
- 15 Bonadonna RC, Saccomani MP, Del Prato S, Bonora E, DeFronzo RA, Cobelli C. Role of tissue-specific blood flow and tissue recruitment in insulin-mediated glucose uptake of human skeletal muscle. Circulation 1998; 98: 234-41.
- 16 Casino PR, Kilcoyne CM, Quyyumi AA, Hoeg JM, Panza JA. The role of nitric oxide in endothelium-dependent vasodilation of hypercholesterolemic patients. Circulation 1993; 88: 2541-7.
- 17 Celermajer DS. Endothelial dysfunction: does it matter? Is it reversible?. J Am Coll Cardiol 1997; 30: 325-33.
- 18 Celermajer DS. Testing endothelial function using ultrasound. J Cardiovasc Pharmacol 1998; 32 (Suppl. 03) S29-S32.
- 19 Celermajer DS, Sorensen KE, Bull C, Robinson J, Deanfield JE. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol 1994; 24: 1468-74.
- 20 Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID. et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992; 340: 1111-5.
- 21 Ceriello A, Bortolotti N, Crescentini A, Motz E, Lizzio S, Russo A. et al. Antioxidant defences are reduced during the oral glucose tolerance test in normal and non-insulin-dependent diabetic subjects. Eur J Clin Invest 1998; 28: 329-33.
- 22 Ceriello A, Bortolotti N, Falleti E, Taboga C, Tonutti L, Crescentini A. et al. Total radical-trapping antioxidant parameter in NIDDM patients. Diabetes Care 1997; 20: 194-7.
- 23 Davda RK, Stepniakowski KT, Lu G, Ullian ME, Goodfriend TL, Egan BM. Oleic acid inhibits endothelial nitric oxide synthase by a protein kinase C-independent mechanism. Hypertension 1995; 26: 764-70.
- 24 El Mabrouk M, Singh A, Touyz RM, Schiffrin EL. Antiproliferative effect of L-NAME on rat vascular smooth muscle cells. Life Sci 2000; 67: 1613-23.
- 25 Enderle MD, Balletshofer BM, Schmulling RM, Haring HU, Pfohl M. [Early detection of atherosclerosis with high resolution ultrasound exemplified by type II diabetic patients]. Ultraschall Med 1998; 19: 16-21.
- 26 Enderle MD, Benda N, Schmuelling RM, Haering HU, Pfohl M. Preserved endothelial function in IDDM patients, but not in NIDDM patients, compared with healthy subjects. Diabetes Care 1998; 21: 271-7.
- 27 Eriksson J, Lindstrom J, Valle T, Aunola S, Hamalainen H, Ilanne-Parikka P. et al. Prevention of Type II diabetes in subjects with impaired glucose tolerance: the Diabetes Prevention Study (DPS) in Finland. Study design and 1-year interim report on the feasibility of the lifestyle intervention programme. Diabetologia 1999; 42: 793-801.
- 28 Eriksson KF, Lindgarde F. No excess 12-year mortality in men with impaired glucose tolerance who participated in the Malmo Preventive Trial with diet and exercise. Diabetologia 1998; 41: 1010-6.
- 29 Fontbonne A, Charles MA, Thibult N, Richard JL, Claude JR, Warnet JM. et al. Hyperinsulinaemia as a predictor of coronary heart disease mortality in a healthy population: the Paris Prospective Study, 15-year follow-up. Diabetologia 1991; 34: 356-61.
- 30 Galle J, Heermeier K. Angiotensin II and oxidized LDL: an unholy alliance creating oxidative stress. Nephrol Dial Transplant 1999; 14: 2585-9.
- 31 Groop LC, Bonadonna RC, DelPrato S, Ratheiser K, Zyck K, Ferrannini E. et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest 1989; 84: 205-13.
- 32 Groop LC, Saloranta C, Shank M, Bonadonna RC, Ferrannini E, DeFronzo RA. The role of free fatty acid metabolism in the pathogenesis of insulin resistance in obesity and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1991; 72: 96-107.
- 33 Guzik TJ, West NE, Black E, McDonald D, Ratnatunga C, Pillai R. et al. Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ Res 2000; 86: E85-E90.
- 34 Hanefeld M, Temelkova-Kurktschiev T, Schaper F, Henkel E, Siegert G, Koehler C. Impaired fasting glucose is not a risk factor for atherosclerosis. Diabet Med 1999; 16: 212-8.
- 35 Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C. et al. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 1995; 91: 1314-9.
- 36 Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin- dependent diabetes mellitus [see comments]. Circulation 1993; 88: 2510-6.
- 37 Kaku B, Mizuno S, Ohsato K, Murakami T, Moriuchi I, Arai Y. et al. The correlation between coronary stenosis index and flow-mediated dilation of the brachial artery. Jpn Circ J 1998; 62: 425-30.
- 38 Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA 1979; 241: 2035-8.
- 39 Kannel WB, McGee DL. Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care 1979; 2: 120-6.
- 40 Knowler WC, Sartor G, Melander A, Schersten B. Glucose tolerance and mortality, including a substudy of tolbutamide treatment. Diabetologia 1997; 40: 680-6.
- 41 Laight DW, Carrier MJ, Anggard EE. Endothelial cell dysfunction and the pathogenesis of diabetic macroangiopathy. Diabetes Metab Res Rev 1999; 15: 274-82.
- 42 Lekakis J, Papamichael C, Anastasiou H, Alevizaki M, Desses N, Souvatzoglou A. et al. Endothelial dysfunction of conduit arteries in insulin-dependent diabetes mellitus without microalbuminuria. Cardiovasc Res 1997; 34: 164-8.
- 43 Leung WH, Lau CP, Wong CK. Beneficial effect of cholesterol-lowering therapy on coronary endothelium-dependent relaxation in hypercholesterolaemic patients. Lancet 1993; 341: 1496-500.
- 44 Luscher TF, Tanner FC, Noll G. Lipids and endothelial function: effects of lipid-lowering and other therapeutic interventions. Curr Opin Lipidol 1996; 7: 234-40.
- 45 Makimattila S, Virkamaki A, Groop PH, Cockcroft J, Utriainen T, Fagerudd J. et al. Chronic hyperglycemia impairs endothelial function and insulin sensitivity via different mechanisms in insulin-dependent diabetes mellitus. Circulation 1996; 94: 1276-82.
- 46 Mancini GB. Long-term use of angiotensin-converting enzyme inhibitors to modify endothelial dysfunction: a review of clinical investigations. Clin Invest Med 2000; 23: 144-61.
- 47 Mancini GB, Henry GC, Macaya C, O’Neill BJ, Pucillo AL, Carere RG. et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing ENdothelial Dysfunction) Study [published erratum in Circulation 1996; 94: 1490]. Circulation 1996; 94: 258-65.
- 48 Neunteufl T, Katzenschlager R, Hassan A, Klaar U, Schwarzacher S, Glogar D. et al. Systemic endothelial dysfunction is related to the extent and severity of coronary artery disease. Atherosclerosis 1997; 129: 111-8.
- 49 O’Driscoll G, Green D, Taylor RR. Simvastatin, an HMG-coenzyme A reductase inhibitor, improves endothelial function within 1 month. Circulation 1997; 95: 1126-31.
- 50 Panza JA, Quyyumi AA, Brush Jr JE, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323: 22-7.
- 51 Pueyo M, Michel JB. [Effects of angiotensin II on vascular remodeling]. Nephrologie 1998; 19: 443-9.
- 52 Pyorala M, Miettinen H, Laakso M, Pyorala K. Hyperinsulinemia and the risk of stroke in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen Study. Stroke 1998; 29: 1860-6.
- 53 Pyorala M, Miettinen H, Laakso M, Pyorala K. Hyperinsulinemia predicts coronary heart disease risk in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen Study. Circulation 1998; 98: 398-404.
- 54 Shankar RR, Wu Y, Shen HQ, Zhu JS, Baron AD. Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes 2000; 49: 684-7.
- 55 Sheu WH, Juang BL, Chen YT, Lee WJ. Endothelial dysfunction is not reversed by simvastatin treatment in type 2 diabetic patients with hypercholesterolemia. Diabetes Care 1999; 22: 1224-5.
- 56 Shiode N, Kato M, Hiraoka A, Yamagata T, Matsuura H, Kajiyama G. Impaired endothelium-dependent vasodilation of coronary resistance vessels in hypercholesterolemic patients. Intern Med 1996; 35: 89-93.
- 57 Sorensen KE, Celermajer DS, Georgakopoulos D, Hatcher G, Betteridge DJ, Deanfield JE. Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein(a) level. J Clin Invest 1994; 93: 50-5.
- 58 Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 1996; 97: 2601-10.
- 59 Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes 2000; 49: 1231-8.
- 60 Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, Johnson A. et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest 1997; 100: 1230-9.
- 61 Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA. et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000; 321: 405-12.
- 62 Stumvoll M, Jacob S, Wahl HG, Hauer B, Loblein K, Grauer P. et al. Suppression of systemic, intramuscular, and subcutaneous adipose tissue lipolysis by insulin in humans. J Clin Endocrinol Metab 2000; 85: 3740-5.
- 63 Tack CJ, Ong MK, Lutterman JA, Smits P. Insulin-induced vasodilatation and endothelial function in obesity/insulin resistance. Effects of troglitazone. Diabetologia 1998; 41: 569-76.
- 64 Tamai O, Matsuoka H, Itabe H, Wada Y, Kohno K, Imaizumi T. Single LDL apheresis improves endothelium-dependent vasodilatation in hypercholesterolemic humans. Circulation 1997; 95: 76-82.
- 65 Taniguchi N, Kaneto H, Asahi M, Takahashi M, Wenyi C, Higashiyama S. et al. Involvement of glycation and oxidative stress in diabetic macroangiopathy. Diabetes 1996; 45 (Suppl. 03) S81-3.
- 66 Tesfamariam B. Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med 1994; 16: 383-91.
- 67 Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol 1992; 263: H321-6.
- 68 Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1998; 21 (Suppl. 01) S5-19.
- 69 Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care 1999; 22: 920-4.
- 70 Touyz RM, Schiffrin EL. Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 1999; 34: 976-82.
- 71 Turner RC. The U.K. Prospective Diabetes Study. A review. Diabetes Care 1998; 21 (Suppl. 03) C35-8.
- 72 Uusitupa M, Siitonen O, Aro A, Pyorala K. Prevalence of coronary heart disease, left ventricular failure and hypertension in middle-aged, newly diagnosed type 2 (non-insulin-dependent) diabetic subjects. Diabetologia 1985; 28: 22-7.
- 73 Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with noninsulin-dependent diabetes mellitus. J Am Coll Cardiol 1996; 27: 567-74.
- 74 Yudkin JS. Abnormalities of coagulation and fibrinolysis in insulin resistance. Evidence for a common antecedent?. Diabetes Care 1999; 22 (Suppl. 03) C25-30.