Hamostaseologie 2003; 23(02): 61-66
DOI: 10.1055/s-0037-1619573
Research Articles
Schattauer GmbH

Die instabile Karotisstenose

Definition und pathobiologische MechanismenThe unstable carotid stenosisdefinition and biological processes
M. Sitzer
1   Neurologische Klinik, Zentrum der Neurologie und Neurochirurgie, Johann-Wolfgang-Goethe-Universität Frankfurt am Main
,
F. Trostdorf
1   Neurologische Klinik, Zentrum der Neurologie und Neurochirurgie, Johann-Wolfgang-Goethe-Universität Frankfurt am Main
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Zusammenfassung

Dieser Artikel informiert über die aktuelle Datenlage bezüglich der pathoanatomischen Merkmale und der möglichen pathophysiologischen Mechanismen, die zu einer Destabilisierung einer hochgradigen Stenose der Arteria carotis interna im extrakraniellen Bifurkationsbereich führen können. Neben dem Vorhandensein zerebral-ischämischer Symptome spielt die so genannte zerebrale Mikroemboliedetektion eine große Rolle bei der präoperativen Charakterisierung und Einteilung der Instabilität. Systematische pathoanatomische Arbeiten zeigten, dass die instabile Karotisplaque im Wesentlichen gekennzeichnet ist durch Plaqueruptur und intraluminale Thrombusformation. Hingegen gibt es ca. 50% der instabilen Plaque, die entweder nur eine Thrombose auf intakter Oberfläche zeigen oder pathoanatomisch nicht die typischen Zeichen der Plaqueruptur aufweisen. Ganz eindeutig ist die instabile Karotisplaque gekennzeichnet durch eine signifikant erhöhte Infiltration mit Entzündungszellen (T-Lymphozyten und Makrophagen), die im Wesentlichen im lumenabwärtsgerichteten Teil der fibrotischen Deckplatte (d. h. dem nekrotischen Kern assoziiert) lokalisiert sind. Von Makrophagen sezerniert findet sich eine erhöhte Expression matrixdegradierender Enzyme (z. B. MMP-9), ebenso zeigt sich eine erhöhte Thombogenität des atherosklerotischen Materials, hauptsächlich vermittelt durch überexprimierten Gewebefaktor. Ein weiteres Kennzeichen der instabilen Plaque ist eine erhöhte Rate von Apoptosen glatter Muskelzellen der fibrotischen Deckplatte. Bakterielle Erreger (z. B. Chlamydia pneumoniae) spielen wahrscheinlich bei der Destabilisierung keine Rolle, da keine eindeutige Assoziation zu den klinischen Markern der Instabilität gezeigt werden konnte. Die exakte pathomorphologische und pathophysiologische Charakterisierung der instabilen Karotisplaque ermöglicht neue Einsichten in Mechanismen der Destabilisierung der humanen Atherosklerose und eröffnet eine Perspektive zur Testung verschiedener pharmakologischer Ansätze zur Beeinflussung der Plaque-Instabilität im Allgemeinen.

Summary

The occurrence of cerebral or retinal ischemic symptoms ipsilateral to high-grade internal carotid artery (ICA) stenosis indicates a status of instability with a substantial risk for future major stroke. Additionally, the detection of microembolic signals downstream of ICA stenosis is predictive for future cerebral ischemia in asymptomatic and symptomatic patients. There is substantial evidence that in unstable ICA stenosis plaque rupture and thrombus formation are the most frequent pathoanatomic findings. In contrast, in nearly the half of unstable carotid plaques the lumen surface appears to be intact. Within plaque tissue, the unstable plaque is mainly characterized by a substantial amount of inflammatory cell (i. e. macrophages, T-cells) infiltration. These cells are mainly localized in the fibrous cap near the necrotic core. Produced by macrophages, matrix degrading enzymes (e. g. MMP-9) are overexpressed in the unstable ICA stenosis. Thrombogenicity is mainly determined by the local concentration of activated tissue factor, also expressed by inflammatory cells. Furthermore, a significantly higher rate of apoptotic smooth muscle cells can be found within the fibrous cap of instable carotid stenoses. Whether infection with Chlamydia pneumoniae contribute to instability is unlikely, because a positive association to clinical instability has not been shown up to now. The exact and detailed characterization of the unstable ICA plaque and the correlation of different biological mechanisms to clinical instability may offer the possibility to use it as a human model of unstable atherosclerosis in general and to test the efficacy of new developed anti-atherosclerotic pharmaceutical agents.

 
  • Literatur

  • 1 Endarterectomy for asymptomatic carotid artery stenosis. Executive committee for the asymptomatic carotid atherosclerosis study. JAMA 1995; 273: 1421-8.
  • 2 Randomised trial of endarterectomy for recently symptomatic carotid stenosis: Final results of the mrc european carotid surgery trial (ecst). Lancet 1998; 351: 1379-87.
  • 3 Babikian VL, Hyde C, Pochay V. et al. Clinical correlates of high-intensity transient signals detected on transcranial doppler sonography in patients with cerebrovascular disease. Stroke 1994; 25: 1570-3.
  • 4 Ballotta E, Da Giau G, Renon L. Carotid plaque gross morphology and clinical presentation: A prospective study of 457 carotid artery specimens. J Surg Res 2000; 89: 78-84.
  • 5 Barnett HJ, Taylor DW, Eliasziw M. et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American symptomatic carotid endarterectomy trial collaborators. N Engl J Med 1998; 339: 1415-25.
  • 6 Bassiouny HS, Sakaguchi Y, Mikucki SA. et al. Juxtalumenal location of plaque necrosis and neoformation in symptomatic carotid stenosis. J Vasc Surg 1997; 26: 585-94.
  • 7 Bauriedel G, Hutter R, Welsch U. et al. Role of smooth muscle cell death in advanced coronary primary lesions: Implications for plaque instability. Cardiovasc Res 1999; 41: 480-8.
  • 8 Buchkremer M, Jander S, Sitzer M. et al. Expression of matrix metalloproteinase-1 in carotid artery plaque. Cerebrovasc Dis 2001; 11 (Suppl. 04) 104.
  • 9 Carr S, Farb A, Pearce WH. et al. Atherosclerotic plaque rupture in symptomatic carotid artery stenosis. J Vasc Surg 1996; 23: 755-65.
  • 10 Carr SC, Farb A, Pearce WH. et al. Activated inflammatory cells are associated with plaque rupture in carotid artery stenosis. Surgery 1997; 122: 757-63.
  • 11 Crisby M, Nordin-Fredriksson G, Shah PK. et al. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: Implications for plaque stabilization. Circulation 2001; 103: 926-33.
  • 12 DeGraba TJ, Siren AL, Penix L. et al. Increased endothelial expression of intercellular adhesion molecule-1 in symptomatic versus asymptomatic human carotid atherosclerotic plaque. Stroke 1998; 29: 1405-10.
  • 13 Esposito G, Blasi F, Allegra L. et al. Demonstration of viable chlamydia pneumoniae in atherosclerotic plaques of carotid arteries by reverse transcriptase polymerase chain reaction. Ann Vasc Surg 1999; 13: 421-25.
  • 14 Fine-Edelstein JS, Wolf PA, O'Leary DH. et al. Precursors of extracranial carotid atherosclerosis in the Framingham study. Neurology 1994; 44: 1046-50.
  • 15 Galis ZS, Sukhova GK, Lark MW. et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994; 94: 2493-503.
  • 16 Galis ZS, Sukhova GK, Kranzhofer R. et al. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci USA 1995; 92: 402-6.
  • 17 Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol 1995; 147: 251-66.
  • 18 Goertler M, Baeumer M, Kross R. et al. Rapid decline of cerebral microemboli of arterial origin after intravenous acetylsalicylic acid. Stroke 1999; 30: 66-9.
  • 19 Golledge J, Greenhalgh RM, Davies AH. The symptomatic carotid plaque. Stroke 2000; 31: 774-81.
  • 20 Han DK, Haudenschild CC, Hong MK. et al. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol 1995; 147: 267-77.
  • 21 Hennerici M, Hulsbomer HB, Hefter H. et al. Natural history of asymptomatic extracranial arterial disease. Results of a long-term prospective study. Brain 1987; 110: 777-91.
  • 22 Herman MP, Sukhova GK, Kisiel W. et al. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest 2001; 107: 1117-26.
  • 23 Inzitari D, Eliasziw M, Gates P. et al. The causes and risk of stroke in patients with asymptomatic internal-carotid-artery stenosis. North American symptomatic carotid endarterectomy trial collaborators. N Engl J Med 2000; 342: 1693-1700.
  • 24 Isner JM, Kearney M, Bortman S. et al. Apoptosis in human atherosclerosis and restenosis. Circulation 1995; 91: 2703-11.
  • 25 Jacob T, Ascher E, Hingorani A. et al. Differential proteolytic activity and induction of apoptosis in fibrous versus atheromatous plaques in carotid atherosclerotic disease. J Vasc Surg 2001; 33: 614-20.
  • 26 Jander S, Sitzer M, Schumann R. et al. Inflammation in high-grade carotid stenosis: A possible role for macrophages and t cells in plaque destabilization. Stroke 1998; 29: 1625-30.
  • 27 Jander S, Sitzer M, Wendt A. et al. Expression of tissue factor in high-grade carotid artery stenosis: Association with plaque destabilization. Stroke 2001; 32: 850-4.
  • 28 Jovinge S, Crisby M, Thyberg J. et al. DNA fragmentation and ultrastructural changes of degenerating cells in atherosclerotic lesions and smooth muscle cells exposed to oxidized LDL in vitro. Arterioscler Thromb Vasc Biol 1997; 17: 2225-31.
  • 29 Kaposzta Z, Baskerville PA, Madge D. et al. L-arginine and S-nitrosoglutathione reduce embolization in humans. Circulation 2001; 103: 2371-5.
  • 30 Kockx MM, De Meyer GR, Buyssens N. et al. Cell composition, replication, and apoptosis in atherosclerotic plaques after 6 months of cholesterol withdrawal. Circ Res 1998; 83: 378-87.
  • 31 Kockx MM, Herman AG. Apoptosis in atherogenesis: Implications for plaque destabilization. Eur Heart J 1998; 19 (Suppl): G23-28.
  • 32 Kolodgie FD, Narula J, Burke AP. et al. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 2000; 157: 1259-68.
  • 33 LaBiche R, Koziol D, Quinn TC. et al. Presence of Chlamydia pneumoniae in human symptomatic and asymptomatic carotid atherosclerotic plaque. Stroke 2001; 32: 855-60.
  • 34 Lammie GA, Sandercock PA, Dennis MS. Recently occluded intracranial and extracranial carotid arteries. Relevance of the unstable atherosclerotic plaque. Stroke 1999; 30: 1319-25.
  • 35 Lammie GA, Wardlaw J, Allan P. et al. What pathological components indicate carotid atheroma activity and can these be identified reliably using ultrasound?. Eur J Ultrasound 2000; 11: 77-86.
  • 36 Loftus IM, Naylor AR, Goodall S. et al. Increased matrix metalloproteinase-9 activity in unstable carotid plaques.A potential role in acute plaque disruption. Stroke 2000; 31: 40-7.
  • 37 Mallat Z, Hugel B, Ohan J. et al. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: A role for apoptosis in plaque thrombogenicity. Circulation 1999; 99: 348-53.
  • 38 Mallat Z, Corbaz A, Scoazec A. et al. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res 2001; 89: E41-45.
  • 39 Markus HS. Transcranial Doppler ultrasound. Br Med Bull 2000; 56: 378-88.
  • 40 Molloy J, Martin JF, Baskerville PA. et al. S-Nitrosoglutathione reduces the rate of embolization in humans. Circulation 1998; 98: 1372-5.
  • 41 Molloy J, Markus HS. Asymptomatic embolization predicts stroke and TIA risk in patients with carotid artery stenosis. Stroke 1999; 30: 1440-3.
  • 42 Nadareishvili ZG, Koziol DE, Szekely B. et al. Increased CD8(+) T cells associated with Chlamydia pneumoniae in symptomatic carotid plaque. Stroke 2001; 32: 1966-72.
  • 43 Ogata J, Yutani C, Kaneko T. et al. Rupture of atheromatous plaque as a cause of thrombotic occlusion of the internal carotid artery. Stroke 1987; 18: 1175-6.
  • 44 Pasterkamp G, Schoneveld AH, Hijnen DJ. et al. Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteases 1, 2 and 9 in the human coronary artery. Atherosclerosis 2000; 150: 245-53.
  • 45 Sacco R. Ischemic stroke. In: Gorelick P, Alter M. (eds). Handbook of neuroepidemiology. New York Basel Hong Kong: Marcel Decker Inc.; 1994: 77-119.
  • 46 Siebler M, Sitzer M, Rose G. et al. Silent cerebral embolism caused by neurologically symptomatic high-grade carotid stenosis. Event rates before and after carotid endarterectomy. Brain 1993; 116: 1005-15.
  • 47 Siebler M, Kleinschmidt A, Sitzer M. et al. Cerebral microembolism in symptomatic and asymptomatic high-grade internal carotid artery stenosis. Neurology 1994; 44: 615-8.
  • 48 Siebler M, Nachtmann A, Sitzer M. et al. Cerebral microembolism and the risk of ischemia in asymptomatic high-grade internal carotid artery stenosis. Stroke 1995; 26: 2184-6.
  • 49 Siebler M, Sitzer M, Rose G. et al. Microembolism in carotid artery disease. Echocardiography 1996; 13: 529-36.
  • 50 Siebler M, Junghans U, Seitz R. et al. Platelet glycoprotein IIb/IIIa receptor antagonist blocked microembolism and salvaged ischemic brain tissue from infarction. Cerebrovasc Dis 2001; 11: 24.
  • 51 Sitzer M, Muller W, Siebler M. et al. Plaque ulceration and lumen thrombus are the main sources of cerebral microemboli in high-grade internal carotid artery stenosis. Stroke 1995; 26: 1231-3.
  • 52 Sitzer M, Siebler M, Rose G. et al. Cerebral microembolism in atherosclerotic carotid artery disease: Facts and perspectives. Funct Neurol 1995; 10: 251-8.
  • 53 Spencer MP. Doppler microembolic signals for diagnosis of ulcerated carotid artery plaques. Echocardiography 1996; 13: 551-4.
  • 54 Stork JL, Kimura K, Levi CR. et al. Source of microembolic signals in patients with high-grade carotid stenosis. Stroke 2002; 33: 2014-8.
  • 55 Thiruvikraman SV, Guha A, Roboz J. et al. In situ localization of tissue factor in human atherosclerotic plaques by binding of digoxigenin-labeled factors VIIa and X. Lab Invest 1996; 75: 451-61.
  • 56 Tremoli E, Camera M, Toschi V. et al. Tissue factor in atherosclerosis. Atherosclerosis 1999; 144: 273-83.
  • 57 van Zuilen EV, Moll FL, Vermeulen FE. et al. Detection of cerebral microemboli by means of transcranial doppler monitoring before and after carotid endarterectomy. Stroke 1995; 26: 210-3.
  • 58 Yamashita K, Ouchi K, Shirai M. et al. Distribution of chlamydia pneumoniae infection in the atherosclerotic carotid artery. Stroke 1998; 29: 773-8.