Hamostaseologie 2004; 24(01): 12-26
DOI: 10.1055/s-0037-1619602
Grußwort
Schattauer GmbH

Standardisierte Diagnostik des von-Willebrand-Syndroms

Diagnostic standards of von Willebrand disease
U. Budde
1   Coagulation Laboratory, Lab. Association Prof. Arndt and Partners, Hamburg
,
E. Drewke
1   Coagulation Laboratory, Lab. Association Prof. Arndt and Partners, Hamburg
,
K. Will
1   Coagulation Laboratory, Lab. Association Prof. Arndt and Partners, Hamburg
,
R. Schneppenheim
2   Department of Paediatric Haematology and Oncology, University Children’s Hospital Hamburg-Eppendorf
› Author Affiliations
Further Information

Publication History

Publication Date:
22 December 2017 (online)

Zusammenfassung

Das von-Willebrand-Syndrom (VWS) wird verursacht durch einen quantitativen und/oder qualitativen Defekt des von-Willebrand-Faktors (VWF), einem hochmolekularen multimeren Glykoprotein. Typisch ist ein Defekt der primären Hämostase mit Blutungssymptomen, die denen bei thrombozytären Störungen gleichen. Der VWF hat zwei Funktionen: Er ist für die Adhäsion von Thrombozyten an verletzten Gefäßen verantwortlich und er stabilisiert den FVIII im Plasma. Wegen der Komplexität der Gerinnungsstörung sind Diagnose und Klassifizierung des VWS eine Herausforderung für jedes Gerinnungslabor. Die Stufendiagnostik bei Verdacht auf ein VWS besteht aus Eigen- und Familienanamnese, orientierenden Untersuchungen (Blutungszeit, Filter-Testen, Thrombozytenzahl, aPTT), erweiterten Testen (VWF:Ag, VWF:RCo, VIII:C) und spezieller Diagnostik (VWF:CB, RIPA-Test, Multimeranalyse, VWF:FVIIIB, thrombozytärer VWF).

Verbessertes Verständnis der klinischen Phänotypen und der pathophysiologischen Grundlagen gaben Anlass zu einer VWS-Klassifizierung, die zwischen quantitativen und qualitativen Defekten des VWF-Moleküls unterschied. Diese beruhte auf der Darstellung struktureller Eigenschaften mittels Auftrennung des VWF im elektrischen Feld. Deutliche Fortschritte der molekularen Techniken erlaubten die Untersuchung von Phänotyp/ Genotyp-Relationen. Hierdurch konnten funktionelle Eigenschaften des VWF aufgeklärt werden sowie viele Gendefekte, die ein VWS verursachen können.

Summary

Von Willebrand disease (VWD) is caused by quantitative and/or qualitative defects of the von Willebrand factor (VWF), a multimeric high molecular glycoprotein. Typically, it affects the primary haemostatic system, which is reflected by a mucocutaneous bleeding tendency simulating a functional platelet defect. The VWF promotes its function in two ways: It promotes platelet adhesion to the injured vessel wall under conditions of high shear forces and it functions as carrier for factor VIII in plasma. Due to its complexity diagnosis of VWD is one of the most challenging of coagulation disorders. The stepwise diagnosis of VWD includes patient’s and family history, orientating procedures (bleeding time, filter tests, platelet count, aPTT), confirmatory tests (VWF:Ag, VWF:RCo, VIII:C) and tests for final classification (VWF:CB, RIPA, multimeric analysis, bWF:FVIIIB, platelet VWF).

Accumulating knowledge of the different clinical phaenotypes and their pathophysiological basis was translated into a classification scheme that differentiated between quantitative and qualitative defects by means of quantitative and functional parameters and by analyzing the electrophoretic pattern of VWF multimers. The advent of molecular techniques provided the opportunity for genotype/phaenotype studies which recently helped not only to elucidate or confirm important functions of VWF and the steps of its posttranslational processing but also many disease causing defects.

 
  • Literatur

  • 1 Allen S, Abuzenadah AM, Blagg JL. et al. A novel type 2N von Willebrand disease-causing mutation that results in defective factor VIII binding, multimerization, and secretion of von Willebrand factor. Blood 2000; 95: 2000-7.
  • 2 Bergmann F, Rotmensch S, Rosenzweig B. et al. The role of von Willebrand factor in preeclampsia. Thromb Haemost 1991; 66: 525-8.
  • 3 Blombäck M, Eneroth P, Andersson O. et al. On laboratory problems in diagnosing mild von Willebrand’s disease. Am J Hemat 1992; 40: 117-20.
  • 4 Budde U, Drewke E, Mainusch K. et al. Laboratory diagnosis of congenital von Willebrand disease. Sem Thromb Haemost 2002; 28: 173-98.
  • 5 Budde U, Schneppenheim R, Zieger B. et al. CBA/VWF:Ag ratio for diagnosis of von Willebrand disease (VWD): incorrect classification in more than 10% of patients with VWD type 2. Thromb Haemost. 1999 100. (Suppl).
  • 6 Budde U, Schneppenheim R. Von Willebrand factor and von Willebrand disease. Rev Clin Exp Hematol 2001; 5: 335-63.
  • 7 Casonato A, Pontara E, Sartorello F. et al. Type 2M von Willebrand disease variant characterized by abnormal multimerization. J Lab Clin Med 2001; 137: 70-6.
  • 8 Casonato A, De Marco L, Mazzucato M. et al. A new congenital platelet abnormality characterized by spontaneous platelet aggregation, enhanced von Willebrand factor platelet interaction, and the presence of all von Willebrand factor multimers in plasma. Blood 1989; 74: 2028-33.
  • 9 De Marco L, Mazzuccato M, Del Ben MG. et al. Type IIB von Willebrand factor with normal sialic acid content induces platelet aggregation in the absence of ristocetin. Role of platelet activation, fibrinogen, and two distinct membrane receptors. J Clin Invest 1987; 80: 475-81.
  • 10 Dejana E, Lampugnani MG, Giorgi M. et al. Von Willebrand factor promotes endothelial celladhesion via an arg-gly-asp-dependent mechanism. J Cell Biol 1989; 109: 367-75.
  • 11 Dent JA, Berkowitz SD, Ware J. et al. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor. Proc Natl Acad Sci U.S.A. 1990; 87: 6306-10.
  • 12 Dong Z, Thoma RS, Crimmins DL. et al. Disulfide bonds required to assemble functional von Willebrand factor. J Biol Chem 1994; 269: 6753-8.
  • 13 Furlan M, Robles R, Lämmle P. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 1996; 87: 4223-34.
  • 14 Gill JC, Endres-Brooks J, Bauer PJ. et al. The effect of AB0 blood group on the diagnosis of von Willebrand disease. Blood 1987; 69: 1691-5.
  • 15 Hilbert L, Jenkins PV, Gaucher C. et al. Type 2M VWD resulting from a lysine deletion within a four lysine residue repeat in the A1 loop of von Willebrand factor. Thromb Haemost 2000; 84: 188-94.
  • 16 Hoyer LW, Shainoff JR. Factor VIII-related protein circulates in normal human plasma as high molecular weight multimers. Blood 1980; 55: 1056-9.
  • 17 Hubbard AR, Rigsby P, Barrowcliffe TW. Standardisation of factor VIII and von Willebrand factor in plasma: Calibration of the 4th International Standard (97/586). Thromb Haemost 2001; 85: 634-8.
  • 18 Huizinga EG, van der Plas RM, Kroon J. et al. Crystal structure of the A3 domain of human von Willebrand factor: implications for collagen binding. Structure 1997; 5: 1147-56.
  • 19 Jorieux S, Fressinaud E, Goudemand J. et al. Conformational changes in the D’ domain of von Willebrand factor induced by CYS25 and CYS95 mutations lead to factor VIII binding defect and multimeric impairment. Blood 2000; 95: 3139-45.
  • 20 Kinoshita S, Harrison J, Lazerson J. et al. A new variant of dominant type II von Willebrand’s disease with aberrant multimeric pattern of factor VIII-related antigen (type IID). Blood 1984; 63: 1369-71.
  • 21 Ledford M, Rabinowtz I, Sadler JE. et al. New variant of von Willebrand disease type II with markedly increased levels of von Willebrand factor antigen and dominant mode of inheritance: von Willebrand disease type IIC Miami. Blood 1993; 82: 169-75.
  • 22 Lyons SE, Bruck ME, Bowie EJW. et al. Impaired intracellular transport produced by a subset of type-IIA von Willebrand disease mutations. J Biol Chem 1992; 267: 4424-30.
  • 23 Mazurier C, Goudemand J, Hilbert L. et al. Type 2N von Willebrand disease: clinical manifestations, pathophysiology, laboratory diagnosis and molecular biology. Bailliere’s Clinical Haematology 2001; 14: 337-47.
  • 24 Nishino M, Girma JP, Rothschild C. et al. New variant of von Willebrand disease with defective binding to factor VIII. Blood 1989; 74: 1591-9.
  • 25 Nitu-Whalley IC, Ridell A, Lee CA. et al. Identifications of type 2 von Willebrand disease in previously diagnosed type 1 patients: a reappraisal using phenotypes, genotypes and molecular modelling. Thromb Haemost 2000; 84: 998-1004.
  • 26 Plow EF, Srouji AH, Meyer D. et al. Evidence that three adhesive proteins interact with a common recognition site on activated platelets. J Biol Chem 1984; 259: 5385-91.
  • 27 Pottinger BE, Read RC, Paleolog EM. et al. Von Willebrand factor is an acute phase reactant in man. Thromb Res 1989; 53: 387-95.
  • 28 Ribba AS, Loisel I, Lavergne JM. et al. Ser968Thr mutation within the A3 domain of von Willebrand factor (VWF) in two related patients leads to a defective binding of VWF to collagen. Thromb Haemost 2001; 86: 848-54.
  • 29 Rodeghiero F, Castaman GC, Dini E. Epidemiological investigation of the prevalence of von Willebrand’s disease. Blood 1987; 69: 454-9.
  • 30 Ruggeri ZM, Nilsson IM, Lombardi R. et al. Aberrant multimeric structure of von Willebrand factor in a new variant of von Willebrand’s disease (type IIC). J Clin Invest 1982; 70: 1124-7.
  • 31 Ruggeri ZM, Zimmerman TS. Variant von Willebrand’s disease. Characterization of two subtypes by analysis of multimeric composition of factor VIII/von Willebrand factor in plasma and platelets. J Clin Invest 1980; 65: 1318-25.
  • 32 Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987; 328: 491-7.
  • 33 Schneppenheim R, Brassard J, Krey S. et al. Defective dimerization of von Willebrand factor subunits due to a Cys Arg mutation in IID von Willebrand disease. Proc Natl Acad Sci USA 1996; 938: 3581-6.
  • 34 Schneppenheim R, Budde U, Obser T. et al. Expression and characterization of von Willebrand dimerization defects in different types of von Willebrand disease. Blood 2001; 97: 2059-66.
  • 35 Schneppenheim R, Federici AB, Budde U. et al. Von Willebrand disease type 2M »Vicenza« in Italian and German patients: identification of the first candidate mutation (G3864R; R1205H) in 8 families. Thromb Haemost 2000; 83: 136-40.
  • 36 Schneppenheim R, Obser T, Drewke E. et al. Isolated molecular defects of von Willebrand factor binding to collagen do not correlate with bleeding symptoms. Blood 2001; 98: 165a.
  • 37 Schneppenheim R, Obser T, Drewke E. et al. The first mutations in von Willebrand disease type IIC Miami. Thromb Haemost 2001; (Suppl): P1805.
  • 38 Schneppenheim R, Obser T, Lenk H. et al. Characterization of a combined defect of FVIII binding and multimerization in a patient with von Willebrand disease type 2N. Blood 2000; 96: 566a.
  • 39 Schneppenheim R, Obser T, Schneppenheim S. et al. Von Willebrand disease type 2A with aberrant structure of individual oligomers is caused by mutations clustering in the von Willebrand factor D3 domain. Blood 2000; 96: 566a.
  • 40 Sixma JJ, De Groot PG. Von Willebrand factor and the blood vessel wall. Mayo Clin Proc 1991; 66: 628-3.
  • 41 Thomas KB, Sutor AH, Zieger B. et al. A simple test for the determination of the von Willebrand factor function: The collagen binding activity. Hämostaseologie 1994; 14: 133-9.
  • 42 Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is depentent on its confirmation and requires calcium ion. Blood 1996; 87: 4235-44.
  • 43 Zieger B, Budde U, Jessat U. et al. New families with von Willebrand disease type 2M (Vicenza). Thromb Res 1997; 87: 57-64.
  • 44 Zimmerman TS, Dent JA, Ruggeri ZM. et al. Subunit composition of plasma von Willebrand factor. Cleavage is present in normal individuals, increased in IIA and IIB von Willebrand disease, but minimal in variants with aberrant structure of individual oligomers (types IIC, IID and IIE). J Clin Invest 1986; 77: 947-51.
  • 45 Vanhoorelbeke K, Cauwenbergs N, Vauterin S. et al. A reliable and reproducible ELISA method to measure ristocetin cofactor activity of von Willebrand factor. Thromb Haemost 2000; 83: 107-13.