Hamostaseologie 2004; 24(01): 37-43
DOI: 10.1055/s-0037-1619604
Grußwort
Schattauer GmbH

Molekulare Genetik des von-Willebrand-Syndroms

Molecular genetics of von Willebrand disease
R. Schneppenheim
1   Klinik für Pädiatrische Hämatologie und Onkologie, Universitäts-Klinikum Hamburg-Eppendorf
› Author Affiliations
Further Information

Publication History

Publication Date:
22 December 2017 (online)

Zusammenfassung

Die multifunktionellen Eigenschaften des von Willebrand-Faktors (VWF) und seine komplexe Biosynthese und Struktur sind für die unterschiedlichen molekularen Mechanismen verantwortlich, welche die bekannte ausgeprägte klinische Heterogenität des von Willebrand-Syndroms (VWS) erklären. Die Identifizierung spezifischer Mutationen, die entweder mit dem kompletten oder partiellen Fehlen des VWF, Störungen der posttranslationalen Modifikation, wie Dimerisierung und Multimerisierung, Beeinträchtigung des intrazellulären Transports oder funktionellen Defekten einhergehen, haben die Möglichkeit für Struktur/Funktions-Studien des VWF und zu Genotyp/Phänotyp-Analysen des VWS geschaffen. Durch die heute verfügbare moderne Technik der Genanalyse können selbst bei dem sehr großen und komplexen Gen des VWF mit seinen 52 Exons die kausalen Mutationen in einer überschaubaren Zeit identifiziert werden. Die Mutationsanalyse kann somit bei der korrekten Diagnosestellung und der Klassifikation von Patienten hilfreich sein, was für viele Patienten für die Wahl der adäquaten Therapie von Bedeutung ist. Auch die Identifizierung von nicht betroffenen Mutationsträgern innerhalb einer Familie mit VWS ist hierdurch möglich. Darüberhinaus können die Mutationsanalyse und die aus ihr gewonnenen Erkenntnisse dazu beitragen, die molekularen Mechanismen des VWF nicht nur bei Blutungen sondern auch bei arteriellen thromboembolischen Erkrankungen zu verstehen.

Summary

Due to the multifunctional character of von Willebrand factor (VWF), its complex biosynthesis and structure, many different disease causing molecular mechanisms exist which explain the well known marked heterogeneity of clinical symptoms in von Willebrand disease (VWD). Identification of specific mutations that can either cause complete or partial absence of VWF, interfere with post-translation processing of VWF like dimerisation and multimerisation, impair intracellular transport or disturb particular functions of VWF, offered the opportunity for structure/function studies of VWF and genotype/phenotype analysis of VWD. Today the molecular tools for such studies are readily available, enabling us to identify the molecular defects in a reasonable time even in the case of the large and complex VWF gene with its 52 exons. Mutation analysis can help to find the correct diagnosis and to classify patients with VWD which may be crucial to choose the adequate therapy. It can also identify unaffected carriers of the disease gene among family members of patients with VWD. Furthermore, mutation analysis and the conclusions drawn from such data can further help to understand the molecular mechanisms of VWF not only in bleeding but also in arterial thrombotic disease.

 
  • Literatur

  • 1 Allen S, Abuzenadah AM, Blagg JL. et al. Two novel type 2N von Willebrand disease-causing mutations that result in defective factor VIII binding, multimerization, and secretion of von Willebrand factor. Blood 2000; 95: 2000-7.
  • 2 Allen S, Goodeve AC, Peake IR. et al. Endoplasmic reticulum retention and prolonged association of a von Willebrand’s disease-causing von Willebrand factor variant with ERp57 and calnexin. Biochem Biophys Res Commun 2001; 280: 448-53.
  • 3 Baronciani L, Cozzi G, Canciani MT. et al. Molecular characterization of a multiethnic group of 21 patients with type 3 von Willebrand disease. Thromb Haemost 2000; 84: 536-40.
  • 4 Baronciani L, Cozzi G, Canciani MT. et al. Molecular defects in type 3 von Willebrand disease: updated results from 40 multiethnic patients. Blood Cells Mol Dis 2003; 30: 264-70.
  • 5 Dent JA, Berkowitz SD, Ware J. et al. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor. Proc Natl Acad Sci USA 1990; 87: 6306-10.
  • 6 Eikenboom JC, Matsushita T, Reitsma PH. et al. Dominant type 1 von Willebrand disease caused by mutated cysteine residues in the D3 domain of von Willebrand factor. Blood 1996; 88: 2433-41.
  • 7 Enayat MS, Guilliatt AM, Surdhar GK. et al. Aberrant dimerization of von Willebrand factor as the result of mutations in the carboxyterminal region: identification of 3 mutations in members of 3 different families with type 2A (phenotype IID) von Willebrand disease. Blood 2001; 98: 674-80.
  • 8 Foster PA, Fulcher CA, Marti T. et al. A major F VIII binding domain resides within the aminoterminal 272 amino acid residues of von Willebrand factor. J Biol Chem 1987; 262: 8443-6.
  • 9 Fujimura Y, Titani K, Holland LZ. et al. A heparin-binding domain of human von Willebrand factor. Characterization and localization to a tryptic fragment extending from amino acid residue Val-449 to Lys-728. J Biol Chem 1987; 262: 1734-9.
  • 10 Gaucher C, Dieval J, Mazurier C. Characterization of von Willebrand factor gene defects in two unrelated patients with type IIC von Willebrand disease. Blood 1994; 84: 1024-30.
  • 11 Gaucher C, Jorieux S, Mercier B. et al. The “Normandy” variant of von Willebrand disease: characterization of a point mutation in the von Willebrand factor gene. Blood 1991; 77: 1937-41.
  • 12 Ginsburg D, Konkle BA, Gill JC. et al. Molecular basis of human von Willebrand disease: analysis of platelet von Willebrand factor mRNA. Proc Natl Acad Sci USA 1989; 86: 3723-7.
  • 13 Hilbert L, Jorieux S, Proulle V. et al. INSERM Network on Molecular Abnormalities in von Willebrand Disease. Two novel mutations, Q1053H and C1060R, located in the D3 domain of von Willebrand factor, are responsible for decreased FVIII-binding capacity. Br J Haematol 2003; 120: 627-32.
  • 14 Hillery CA, Mancuso DJ, Evan Sadler J. et al. Type 2M von Willebrand disease: F606I and I662F mutations in the glycoprotein Ib binding domain selectively impair ristocetin- but not botrocetin-mediated binding of von Willebrand factor to platelets. Blood 1998; 91: 1572-81.
  • 15 Jorieux S, Fressinaud E, Goudemand J. et al. Conformational changes in the D’ domain of von Willebrand factor induced by CYS 25 and CYS 95 mutations lead to factor VIII binding defect and multimeric impairment. Blood 2000; 95: 3139-45.
  • 16 Kalafatis M, Takahashi Y, Girma JP. et al. Localization of a collagen-interactive domain of human von Willebrand factor between amino acid residues Gly 911 and Glu 1,365. Blood 1987; 70: 1577-83.
  • 17 Ledford MR, Rabinowitz I, Sadler JE. et al. New variant of von Willebrand disease type II with markedly increased levels of von Willebrand factor antigen and dominant mode of inheritance: von Willebrand disease type IIC Miami. Blood 1993; 82: 169-75.
  • 18 Lyons SE, Bruck ME, Bowie EJW. et al. Impaired intracellular transport produced by a subset of type-IIA von Willebrand disease mutations. J Biol Chem 1992; 267: 4424-30.
  • 19 Mancuso DJ, Tuley EA, Westfield LA. et al. Human von Willebrand factor gene and pseudogene: Structural analysis and differentiation by polymerase chain reaction. Biochemistry 1991; 30: 253-69.
  • 20 Mancuso DJ, Tuley EA, Westfield LA, Worrall NK, Shelton-Inloes BB, Sorace JM, Alevy YG, Sadler JE. Structure of the gene for human von Willebrand factor. J Biol Chem 1989; 264: 19514-19527.
  • 21 Mayadas TN, Wagner DD. Vicinal cysteines in the prosequence play a role in von Willebrand factor multimer assembly. Proc Natl Acad Sci USA 1992; 89: 3531-5.
  • 22 Meyer D, Fressinaud E, Gaucher C. et al. Gene defects in 150 unrelated French cases with type 2 von Willebrand disease: from the patient to the gene. INSERM Network on Molecular Abnormalities in von Willebrand Disease. Thromb Haemost 1997; 78: 451-6.
  • 23 Ngo KY, Glotz VT, Koziol JA. et al. Homozygous and heterozygous deletions of the von Willebrand factor gene in patients and carriers of severe von Willebrand disease. Proc Natl Acad Sci USA 1988; 85: 2753-7.
  • 24 Nishino M, Girma JP, Rothschild C. et al. New variant of von Willebrand disease with defective binding to factor VIII. Blood 1989; 74: 1591-9.
  • 25 Ribba AS, Loisel I, Lavergne JM. et al. Ser968Thr mutation within the A3 domain of von Willebrand factor (VWF) in two related patients leads to a defective binding of VWF to collagen. Thromb Haemost 2001; 86: 848-54.
  • 26 Saiki RK, Gelfand DH, Stoffel S. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239: 487-91.
  • 27 Sakariassen KS, Fressinaud E, Girma JP. et al. Mediation of platelet adhesion to fibrillar collagen in flowing blood by a proteolytic fragment of human von Willebrand factor. Blood 1986; 67: 1515-8.
  • 28 Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74: 5463-7.
  • 29 Schneppenheim R, Brassard J, Krey S. et al. Defective dimerization of von Willebrand factor subunits due to a Cys→Arg mutation in type IID von Willebrand disease. Proc Natl Acad Sci USA 1996; 938: 3581-6.
  • 30 Schneppenheim R, Budde U, Krey S. et al. Results of a screening for von Willebrand disease type 2N patients with suspected haemophilia A or van Willebrand disease type 1. Thromb Haemost 1996; 76: 598-602.
  • 31 Schneppenheim R, Budde U, Obser T. et al. Expression and characterization of von Willebrand dimerization defects in different types of von Willebrand disease. Blood 2001; 97: 2059-66.
  • 32 Schneppenheim R, Gazda H, Budde U. et al. A single base deletion (ΔC in exon 18 of the VWF gene) is the most common molecular defect in von Willebrand disease type 3 in countries surrounding the Baltic Sea. In: Herrmann FH. (ed). Molekulare (DNA) Diagnostik hereditärer Hämostasedefekte. Lengerich: Pabst Science Publishers; 1999: 91-6.
  • 33 Schneppenheim R, Krey S, Bergmann F. et al. Genetic heterogeneity of severe von Willebrand disease type III in the German population. Human Genetics 1994; 94: 640-52.
  • 34 Schneppenheim R, Obser T, Drewke E. et al. Isolated molecular defects of von Willebrand factor binding to collagen do not correlate with bleeding symptoms. Blood 2001; 98 (Suppl. 01) 165.
  • 35 Schneppenheim R, Obser T, Schneppenheim S. et al. Von Willebrand disease type 2A with aberrant structure of individual oligomers is caused by mutations clustering in the von Willebrand factor D3 domain. Blood 2000; 96 (Suppl. 01) 2429.
  • 36 Schneppenheim R, Thomas KB, Krey S. et al. Identification of a candidate missense mutation in a family with von Willebrand disease type IIC. Hum Genet 1995; 95: 681-6.
  • 37 Shelton-Inloes BB, Chehab FF, Mannucci PM. et al. Gene deletions correlate with the development of alloantibodies in von Willebrand disease. J Clin Invest 1987; 79: 1459-65.
  • 38 Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98: 503-17.
  • 39 Ware J, Dent JA, Azuma H. et al. Identification of a point mutation in type IIB von Willebrand disease illustrating the regulation of von Willebrand factor affinity for the platelet membrane glycoprotein Ib-IX receptor. Proc Natl Acad Sci USA 1991; 887: 2946-50.
  • 40 Zhang ZP, Falk G, Blomback M. et al. A single cytosine deletion in exon 18 of the von Willebrand factor gene is the most common mutation in Swedish vWD type III patients. Hum Mol Genet 1992; 1: 767-8.
  • 41 Zhang ZP, Lindstedt M, Falk G. et al. Nonsense mutations of the von Willebrand factor gene in patients with von Willebrand disease type III and type I. Am J Hum Genet 1992; 51: 850-8.