Hamostaseologie 2004; 24(03): 179-190
DOI: 10.1055/s-0037-1619624
In eigener Sache
Schattauer GmbH

Thrombin: thrombosehemmende Wirkungen und pharmakologische Konsequenzen

Thrombin: antithrombotic properties and pharmacological consequences
H. P. Arbogast
1   Chirurgische Klinik und Poliklinik, Klinikum der Universität München-Großhadern
› Author Affiliations
Further Information

Publication History

Publication Date:
22 December 2017 (online)

Zusammenfassung

In den vergangenen Jahren trugen Endothelzellkulturen aus verschiedenen Körperregionen erheblich zum Verständnis der komplexen pro- und antithrombotischen Mechanismen des Gefäßsystems bei. Wichtigstes Schlüsselenzym dabei ist Thrombin. Aufgrund seiner hämostatischen Eigenschaften katalysiert diese Serinprotease Fibrinbildung, Aktivierung der Faktoren V, VIII und XIII sowie irreversible Plättchenaggregation. Im Falle einer Stimulation des Endothels zur Expression von Bindungsstellen für die Faktoren IX, IXa, X, Xa, von-Willebrand-Protein und PAF (z. B. durch Entzündungsmediatoren) finden diese Prozesse im menschlichen Kreislauf statt. Dann resultiert eine beschleunigte Gerinnungskaskade und eine verstärkte Plättchen/ Granulozyten-Interaktion. Paradoxerweise ist bei geringer intravasaler Konzentration Thrombin in Kombination mit einer gesunden Endothelschicht der kritische Faktor zur Verhinderung von Thrombosen. Entsprechende antithrombogene Eigenschaften spielen sich hauptsächlich am venolären Endothel der Mikrozirkulation ab; im Detail sind dies: Thrombin-induzierte Bildung endothelialer Autakoide, antikoagulatorische Protein-C-Aktivierung, Bindung aktivierter Gerinnungsfaktoren an endothelialen Heparan-ATIII-Komplexen, Ausschüttung des profibrinolytischen Plasminogenaktivators endothelialen Ursprungs. Das Verständnis dieser komplexen Regulation ermöglicht nicht nur eine kritische Erfassung aktuell diskutierter hämostaseologischer Risikofaktoren (erhöhte Plättchenaktivität, hohe Konzentrationen von Faktor VII, VIII, Fibrinogen, PAI, ATIII), sondern auch die Entwicklung neuer pharmakologischer Strategien zur Thromboseinhibition.

Summary

During the last few years, the availability of endothelial cell cultures isolated from different vascular regions contributed to a significant increase in understanding the complex pro- and antithrombotic mechanisms in our circulatory system. The most important key enzyme is thrombin. Due to its haemostatic properties this serin protease catalyzes fibrin formation, activation of factors V, VIII and XIII as well as irreversible platelet aggregation. These processes may occur even within the circulatory system in case of endothelial stimulation (e. g. by inflammation mediators) for expression of binding sites for factors IX, IXa, X, Xa, von Willebrand protein and PAF. Thus not only catalytically activated coagulatory cascades, but also enhanced cooperation of platelets and granulocytes will occur. Paradoxically, in low intravascular concentration, thrombin, in combination with a healthy endothelial layer, may be the critical factor for the inhibition of thromboses. Respective antithrombogenic properties will mainly affect pre-venous microvascular circulation. In detail, they include thrombin-induced endothelial formation of antiaggregatory autacoids from platelet release products, anticoagulatory activation of protein C and absorption of active coagulation factors at endothelial heparan/ATIII complexes as well as release of profibrinolytic plasminogen activator of endothelial origin. The understanding of these complex regulatory functions enables not only a critical evaluation of actually discussed haemostasiologic risk factors (enhanced platelet reactivity, high concentrations of factor VII, VIII, fibrinogen, PAI, ATIII), but also the development of new pharmacologic strategies for prevention of thrombosis.

 
  • Literatur

  • 1 Bauer KA. Activation of the factor VII-tissue factor pathway. Thromb Haemost 1997; 78: 108-11.
  • 2 Busch C, Cancilla P, Debault LE. et al. Use of endothelium cultured on microcarriers as a model for the microcirculation. J Lab Invest 1982; 47: 498-504.
  • 3 Chow TW, Hellums JD, Thiagarajan P. Thrombin receptor activating peptide (SFLLRN) potentiates shear-induced platelet microvesiculation. J Lab Clin Med 2000; 135: 66-72.
  • 4 Christiansen S, Jahn UR, Meyer J. et al. Anticoagulative management of patients requiring left ventricular assist device implantation and suffering from heparin-induced thrombocytopenia type II. Ann Thorac Surg 2000; 69: 774-7.
  • 5 Djellas Y, Antonakis K, Le Breton GC. Shifts in the affinity distribution of one class of seven-transmembrane receptors by activation of a separate class of seven-transmembrane receptors. Biochem Pharmacol 2000; 59: 1521-9.
  • 6 Eriksson BI, Keman S, Lindbratt S. et al. Prevention of thromboembolism with use of recombinant hirudin. Results of a double-blind, multicenter trial comparing the efficacy of desirudin (Revasc) with that of unfractionated heparin in patients having a total hip replacement. J Bone Joint Surg Am 1997; 79: 326-33.
  • 7 Esmon CT. Possible involvement of cytokines in diffuse intravascular coagulation and thrombosis. Bailliere’s Best Pract Res Clin Haematol 1999; 12: 343-59.
  • 8 Esmon NL, Owen WG, Esmon CT. Isolation of a membrane-bound cofactor for thrombin-catalyzed activation of protein C. J Biol Chem 1982; 257: 859-64.
  • 9 Fickenscher K, Aab A, Stuber W. A photometric assay for blood coagulation factor XIII. Thromb Hemost 1991; 65: 535-40.
  • 10 Fischer BE, Schlokat U, Mitterer A. et al. Differentiation between proteolytic activation and autocatalytic conversion of human prothrombin. Activation of reconbinant human prothrombin and recombinant D419N-prothrombin by snake venoms from Echis carinatus and Oxuranus scutellatus. Protein Eng 1996; 9: 921-6.
  • 11 Gerlach F, Becker BF. Interaktion von Blut und Gefäßwand: Hämostaseologische Aspekte. Z Kardiol 1993; 82 (Suppl. 05) 13-21.
  • 12 Gerlach F, Nees S, Becker BF. The vascular endothelium: a survey of some newly evolving biochemical and physiological features. Basic Res Cardiol 1985; 80: 459-74.
  • 13 Giesen PL, Rauch U, Bohrmann B. et al. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA 1999; 96: 2311-5.
  • 14 Gonzalez-Fajardo JA, Arreba E, Castrodeza J. et al. Venographic comparison of subcutaneous low-molecular weight heparin with oral anticoagulant therapy in the long-term treatment of deep venous thrombosis. J Vasc Surg 1999; 30: 283-92.
  • 15 Gouault-Helimann M, Josso F. Initiation in vivo of blood coagulation. The role of white blood cells and tissue factor. Nouv Presse Med. 1979; 8: 3249-53.
  • 16 Greenberg CS, Miraglia CC, Rickles FR. et al. Cleavage of blood coagulation factor XIII and fibrinogen by thrombin during in vitro clotting. J Clin Invest 1985; 75: 1463-70.
  • 17 Greenberg CS, Miraglia CC. The effect of fibrin polymers on thrombin-catalyzed plasma factor XIIIa formation. Blood 1985; 66: 466-9.
  • 18 Griffin JH. The thrombin paradox. Nature 1995; 378: 337-8.
  • 19 Heyderman RS, Klein NJ, Shennan GI. et al. Reduction of the anticoagulant activity of glycosaminoglycans on the surface of the vascular endothelium by endotoxin and neutrophils: evaluation by an amidolytic assay. Thromb Res 1992; 67: 677-85.
  • 20 Hoekstra WJ, Hulshizer BL, McComsey DF. et al. Thrombin receptor (PAR-1) antagonists. Heterocycle-based peptidomimetics of the SFLLR agonist motif. Bioorg Med Chem Lett 1998; 8: 1649-54.
  • 21 Kato Y, Kita Y, Nishio M. et al. In vitro antiplatelet profile of FR171113, a novel non-peptide thrombin receptor antagonist. Eur J Pharmacol 1999; 384: 197-202.
  • 22 Kirchhofer D, Nemerson Y. Initiation of blood coagulation: the tissue factor/factor VIIa complex. Curr Opin Biotechnol 1996; 7: 386-91.
  • 23 Lawson JH, Kalafatis M, Stram S. et al. A model for the tissue factor pathway to thrombin. I. An empirical study. J Biol Chem 1994; 269: 23357-66.
  • 24 Levin EG, Stern DM, Nawroth PP. et al. Specifity of the thrombin-induced release of tissue plasminogen activator from cultured human endothelial cells. Thromb Haemost 1986; 56: 115-9.
  • 25 Lupu C, Lupu F, Kakkar V. et al. Thrombin induces a partial release and redistribution of tissue factor pathway inhibitor by human endothelial cells. Sem Thromb Hemost 1995; 933.
  • 26 Marlar RA, Neumann A. Neonatal purpura fulminans due to homozygous protein C protein S deficiency. Sem Thromb Haemost 1990; 16: 299-309.
  • 27 Monreal M, Lafoz E, Olive A. et al. Comparison of subcutaneous unfractionated heparin with a low molecular weight heparin (Fragmin) in patients with venous thromboembolism and contraindications to coumarin. Thromb Haemost 1994; 71: 7-11.
  • 28 Monreal M, Roncales FJ, Ruiz J. et al. Secondary prevention of venous thromboembolism: A role for low-molecular weight heparin. Haemostasis 1998; 28: 236-43.
  • 29 Mosesson MW. Fibrinogen and fibrin polymerization: appraisal of the binding events that accompany fibrin generation and fibrin clot assembly. Blood Coagul Fibrinolysis. 1997; 8: 257-67.
  • 30 Nees S, Dendorfer A, Meier-Ewert H. et al. Inhibition of PAF-induced aggregation of human PMNs and platelets by a newly developed blood filtration system. Pharmaceut Pharmacol Lett 1992; 2: 36-9.
  • 31 Pearson JD. Endothelial cell function and thrombosis. Bailliere’s Best Pract Res Clin Haematol 1999; 12: 329-41.
  • 32 Rollason G, Sefton MV. Measurement of the rate of thrombin production in human plasma in contact with different materials. J Biomed Mater Res 1992; 26: 675-93.
  • 33 Rosenberg RD, Rosenberg JS. Natural anticoagulant mechanisms. J Clin Invest 1984; 74: 1-6.
  • 34 Schile F, Vuillemenot A, Kramarz P. et al. Use of recombinant hirudin as antithrombotic treatment in patients with heparin-induced thrombocytopenia. Am J Hematol 1995; 50: 20-5.
  • 35 Schror K. Antiplatelet drugs. A comparative review. Drugs 1995; 50: 7-28.
  • 36 Seiler SM. Thrombin receptor antagonists. Semin thromb Hemost 1996; 22: 223-32.
  • 37 Semeraro N, Colucci M. Tissue factor in health and disease. Thromb Hemost 1997; 78: 759-64.
  • 38 Verstraete M. Synthetic inhibitors of platelet glycoprotein IIb/IIIa in clinical development. Circulation 2000; 101: E76-80.