Hamostaseologie 2005; 25(02): 191-199
DOI: 10.1055/s-0037-1619651
Original Article
Schattauer GmbH

Gerinnungstherapeutische Ansätze bei Sepsis

Therapeutic modulation of coagulation in sepsis
A. Loew
1   Charité, Campus Virchow-Klinikum, Berlin
,
H. Riess
1   Charité, Campus Virchow-Klinikum, Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Zusammenfassung

Ausgehend von dem zunehmenden Verständnis der bei Patienten mit Sepsis beobachteten Gerinnungsstörung sowie den bisher erfolglosen Versuchen durch Modulation der Zytokinantwort die Prognose von Sepsispatienten zu verbessern, wurden in den vergangenen Jahren gerinnungstherapeutische Ansätze der Sepsisbehandlung intensiver untersucht. Während die Phase-III-Studien mit den Gerinnungsinhibitoren, Antithrombin und TFPI (tissue factor pathway inhibitor) für das Gesamtkollektiv der Patienten mit schwerer Sepsis keine Prognoseverbesserung zeigten, fand sich für rekombinantes humanes aktiviertes Protein C (rhAPC) eine signifikante, 19%ige relative Reduktion der Sterblichkeit. Weitere Analysen verdeutlichten, dass die Therapie mit rhAPC insbesondere bei Patientengruppen mit hoher Sterblichkeit im Plazeboarm zu klinisch relevanten Ergebnisverbesserungen führt.

Die durch natürliche Gerinnungsinhibitoren bewirkte Hemmung der Gerinnselbildung, spiegelt sich in allen drei Studien in einer, z.T. signifikanten Zunahme der Sepsis-immanenten Blutungsneigung wider, wobei im Falle von Antithrombin die gleichzeitige Heparingabe das Blutungsrisiko deutlich erhöht und möglicherweise dem erhofften Antithrombineffekt auf die Patientenprognose entgegenwirkt. Hinweise auf einen möglicherweise positiven Effekt von Heparin in den Plazeboarmen einerseits, andererseits auf nachteilige Effekte von Heparin in den Therapiearmen (v. a. mit Antithrombin bzw. TFPI) führen zur kontroversen Diskussion des Nutzen/Risiko-Verhältnisses von Heparin in prophylaktischer Dosis bei Patienten mit schwerer Sepsis. Während die Bedeutung und optimale Applikation von Heparin bei schwerer Sepsis der weiteren Klärung bedarf, haben die Studiendaten zu rhAPC zur Zulassung dieses Therapieprinzips und seiner Verankerung in den Empfehlungen zur Behandlung von Patienten mit schwerer Sepsis geführt.

Summary

Based on the increasing knowledge of defects in haemostasis in patients with sepsis as well as on the nonconclusive results of studies which tried to increase the prognosis by modulating cytokine response of the patients, in the last years the impact of therapeutic modulation of coagulation in sepsis has been investigated. In contrast to the results of phase III studies with the coagulation inhibitors antithrombin and tissue factor pathway inhibitor recombinant human activated protein C (rhAPC) resulted in a significant reduction in mortality for the whole study population. Data analyses showed, that treatment with rhAPC was clinically beneficial especially in patient groups who showed a high mortality in the placebo arm.

Inhibition of thrombus formation due to the therapy with natural coagulation inhibitors resulted in an increase of sepsis-immanent haemorrhage, which became significant in some studies. Treatment with antithrombin and heparin resulted in a considerable increase in bleeding complications and on the other hand, may have antagonized the expected effect of antithrombin on the patient's prognosis. Some results suggesting beneficial effects of heparin on patient prognosis in the placebo arms and on the other hand negative effects of heparin in the verum arms – especially with antithrombin or tissue factor pathway inhibitor – let to a controversial discussion of the risk/benefit relation of heparin, given in prophylactic doses to patients with severe sepsis.

Whereas the impact and optimal application of heparin to patients with severe sepsis needs to be clarified study results with rhAPC resulted in the approval of this therapy and the implementation in the guidelines of the treatment of patients with severe sepsis.

 
  • Literatur

  • 1 Abraham E, Reinhard K, Svoboda P. et al. Assessment of the safety of recombinant tissue factor pathway inhibitor in patients with severe sepsis: a multicenter, randomized, placebo-controlled, single-blind, dose escalation study. Critical Care Medicine 2001; 29: 2081-9.
  • 2 Abraham E, Reinhart K, Opal S. et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis. 2003; 290: 238-47.
  • 3 Aird W.C. Natural anticoagulant inhibitors: activated Protein C. Best Pract Res Clin Haematol 2004; 7: 161-82.
  • 4 Alberio L, Lammle B, Esmon CT. Protein C replacement in severe meningoccaemia. Rationale and clinical experience. Clin Infect Dis 2001; 32: 1338-46.
  • 5 Angus DC, Laterre PF, Helterbrand J. et al. The effect of drotrecogin alfa (activated) on long-term survival after severe sepsis. Crit Care Med 2004; 32: 2199-206.
  • 6 Angus DC, Linde-Zwirble WT, Lidicker J. et al. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome ans associated costs of care. Crit Care Med 2001; 29: 1303-10.
  • 7 Baudo F, Caimi TM, deCataldo F. et al. Antithrombin III (AT III) replacement therapy in patients with sepsis and/or post surgical complications: a double-blind, randomized, multicenter trial. Intensive Care Med 1998; 24: 336-42.
  • 8 Bernard G.R, Ely EW, Wright TJ. et al. Safety and dose relationship of recombinant human activated protein C for coagulopathy in severe sepsis. Crit Care Med 2001; 11: 2051-9.
  • 9 Bernard GR, Macias WL, Joyce DE. et al. Safety assessment of drotrecogin alfa (activated) in the treatment of adult patients with severe sepsis. Crit Care 2003; 7: 155-63.
  • 10 Bernard GR, Vincent JL, Laterre PF. et al. Efficacy and sefety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344: 699-709.
  • 11 Bharatto F, Michielan F, Gagliardi G. et al. Use of protein C concentrate in adult patients with severe sepsis and septic shock. Minerva Anestsiol 2004; 70: 351-6.
  • 12 Bone RC, Balk RA, Cerra FB. et al. Definiton for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992; 101: 1644-55.
  • 13 Brunkhorst F, Engel C, Reinhart H. et al. Epidemiology of severe sepsis and septic shock in Germany - results from the German „Prevalence“ Study. Crit Care 2005; 9 (Suppl. 01) S83 P196.
  • 14 Camerer E, Kolsto AB, Prydz H. Cell biology of tissue factor, the principal initiator of blood coagulation. Thromb Res 1996; 81: 1-41.
  • 15 Cheng T, Liu D, Griffin JH. et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nad Med 2003; 9: 338-42.
  • 16 Creasey AA. New potential therapeutic modalities: tissue factor pathway inhibitor. Sepsis 2000; 3: 173-82.
  • 17 Davidson BL, Geerts WH, Lensing AWA. Lowdose heparin for severe sepsis. N Engl J Med 2002; 347: 1036-7.
  • 18 Dellinger RP, Carlet JM, Masur H. Surviving Sepsis Campaign guidelines for management of severe sepis and septic shock. Crit Care Med 2004; 32: 858-73.
  • 19 Dhainaut JF, Yan SB, Joyce DE. et al. Treatment effects of drotrecobin alfa (activated) in patients with severe sepsis with or without overt disseminated intravascular coagulation. J Thromb Haemost 2004; 2: 1924-33.
  • 20 Dhainaut JF, Yan SB, Margolis BD. et al. PROWESS Sepsis Study Group. Drotrecogin alfa (activated) (recombiant human activated protein C) reduces host coagulopathy response in patients with severe sepsis. Thromb Haemost 2003; 90: 642-53.
  • 21 Dickneite G, Leithauser B. Influence of antithrombin III on coagulation and inflammation in porcine septic shock. Arteriosclear Thromb Vasc Biol 1999; 19: 1566-72.
  • 22 Dörffler-Melly J, de Jonge E, de Pont AC. et al. Bioavailability of subcuteanous low-molecularweight heparin to patients on vasopressors. Lancet 2002; 359: 849-50.
  • 23 Edbrook DL, Hibbert CL, Kingsley JM. et al. The patient-related costs of care for sepsis patients in an United Kingdom adult general intensive care unit. Crit Care Med 1999; 27: 1760-7.
  • 24 Eichacker PQ, Parent C, Kalil A. et al. Risk and the efficacy of anti-inflammatory agents: retrospective and confirmatory studies of sepsis. Am J Respir Crit Care Med 2002; 166: 1197-205.
  • 25 Eisele B, Lamy M, Thijs LG. et al. Antithrombin III in patients with severe sepsis. A randomized, placebo-controlled, double-blind multicenter trial plus a meta-analysis on all randomized, placebo-controlled, double-blind trials with antithrombin III in severe sepsis. Int Care Med 1998; 24: 663-72.
  • 26 Ely EW, Laterre PF, Angus DC. et al. For the PROWESS Investigators. Drotrecogin alfa (activated) administration across clinically important subgroups of patients with severe sepsis. Crit Care Med 2003; 31: 12-9.
  • 27 Enjyoi K, Miyata T, Kamikubo Y. et al. Effect of heparin on the inhibiton of factor Xa by tissue factor pathway inhibitor: A segment, Gly212-Phe243, of the third Kunitz domain is a heparinbinding site. Biochemistry 1995; 34: 5725-35.
  • 28 Enkhbaatar P, Okajima K, Murakami K. et al. Recombinant tissue factor pathway inhibitor reduces lipopolysaccaride-induced pulmonary vascular injury by inhibiting leukocyte activation. Am J Respir Crit Care Med 2000; 162: 1752-9.
  • 29 Esmon CT. Crosswalk between inflammation and thrombosis. Maturitas 2004; 47: 305-14.
  • 30 Esmon CT. Protein C pathway in sepsis. Ann Med 2002; 34: 589-605.
  • 31 Ettinghausen CE, Veldmann A, Beeg T. et al. Replacement therapy with protein C concetrate in infants and adolescents with meningococcal sepsis and purpura fulminans. Semin Thromb Hemost 1999; 25: 537-42.
  • 32 Faust SN, Levin M, Harrison OB. et al. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. New Eng J Med 200 6: 408-16.
  • 33 Fourrier F, Chopin C, Huart JJ. et al. Double-blind, placebo-controlled trial of antithrombin III concentrates in septic shock with disseminated intravascular coagulation. Chest 1993; 104: 882-8.
  • 34 Fourrier F. Recombinant human activated protein C in the treatment of severe sepsis: An evidencebased review. Crit Care Med 2004; 32: S534-41.
  • 35 Grey ST, Tsuchida A, Hau H. et al. Selective inhibitory effects of the anticoagulant activated protein C on the responses of human mononuclear phagocytes to LPS, IFN-gamma, or phorbol ester. J Immun 1994; 153: 3664-72.
  • 36 Hancock WW, Grey ST, Hau L. et al. Binding of activated protein C to a specific receptor on human mononuclear phagocytes inhibits intracellular calcium signaling and monocyte-dependent proliferative responses. Transplantation 1995; 60: 1525-32.
  • 37 Hartman DL, Bernard GR, Rosenfeld BA. et al. Protein C activitiy at baseline predicts development of shock and 28 day mortalitiy in patients with severe sepsis. Int Care Med 1998; 24: 1-204.
  • 38 Hoffmann JN, Vollmar B, Inthorn D. et al. Antithrombin reduces leukocyte adhesion during chronic endotoxemia by modulation of the cyclooxygenase pathway. Am J Pysiol Cell Physiol 2000; 279: C98-107.
  • 39 Hoffmann JN, Vollmar B, Inthorn D. et al. The thrombin antagonist hirudin fails to inhibit endotoxin-induced leukocyte/endothelial cell interaction and microvascular perfusion failure. Shock 2000; 14: 528-34.
  • 40 Iba T, Yagi Y. Protective effects of antithrombin III on organ dysfunction induced by the continuous infusion of endotoxin in rats. J Jpn Assoc. Acute Med 1998; 9: 45-52.
  • 41 Ilias W, List W, Decruyenaere J. et al. Antithrombin III in patients with severe sepsis: a pharmcokinetic study. Intensive Care Med 2000; 26: 704-15.
  • 42 Inthorn D, Hoffman JM, Hartl WH. et al. Antithrombin III supplementation in severe sepsis: beneficial effects on organ dysfunction. Shock 1997; 8: 328-34.
  • 43 Jordan RE, Nelson RM, Kilpatrick J. et al. Inactivation of human Antithrombin by neutrophil elastase: Kinetics of the heparin-dependent reaction. J Biol Chem 1989; 264: 10493-500.
  • 44 Joyce DE, Gelbert L, Ciaccia A. et al. Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 2001; 276: 1199-203.
  • 45 Joyce DE, Grinell BW. Recombinant human activated protein C attenuates the inflammatory response in endothealium and monocytes by modulating nuclear factor-kappaB. Crit Care Med 2002; 30: S288-93.
  • 46 Laterre PF, Levy H, Ball D. et al. The effects of drotrecogin α (activated) on hospital mortality, length of stay, and discharge location. Chest 2002; 122: S143.
  • 47 Mayr AJ, Dünser M, Jochberger S. et al. Antifactor Xa activity in intensive care patients receiving thromboembolic propylaxis with standard doses of Enoxaparin. Thromb Res 2002; 105: 201-4.
  • 48 Minamiya Y, Saito S, Kalina U. et al. Antihrombin III diminishes production of oxygen radical in endotoxub-infused rat lung. Shock 2004; 21: 139-43.
  • 49 Murakami K, Okajima K, Uchiba M. et al. Activated protein C attenuates endotoxin-induced pulmonary vascular injury by inhibiting activated leukocytes in rats. Blood 1996; 87: 642-7.
  • 50 Okajima K, Uchiba M. The anti-inflammatory properties of antithrombin III: new therapeutic implications. Semin Thromb Hemaost 1998; 24: 27-32.
  • 51 Opal SM. Unintended bias, clinical trial results, and the heparin post hoc crossover fallacy. Crit care Med 2004; 32: 874-5.
  • 52 Panacek EA, Marshall JC, Albertson TE. et al. Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F (ab’)2 fragment of afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit Care Med 2004; 32: 2173-82.
  • 53 Park CT, Creasey AA, Wright SD. Tissue factor pathway inhibitor blocks cellular effects of endotoxin by binding to endotoxub and interfering with transfer to CD14. Blood 1997; 89: 4268-74.
  • 54 Pulletz S, Lehmann C, Volk T. et al. Influence of heparin and hirudin on endothelial binding of Antithrombin in experimental thrombinemia. Crit Care Med 2000; 28: 2881-6.
  • 55 Rice TW, Bernard GR. Therapeutic Intervention and Targets für Sepsis. Annu Rev Med 2005; 56: 225-48.
  • 56 Riess H. Antithrombin in severe sepsis – „new“ indications of an „old“ drug?. Int Care Med 2000; 26: 657-9.
  • 57 Riewald M, Riess H. Treatment options for clinically recognized disseminated intravascular coagulation. Sem Thromb Hemostas 2000; 24: 53-9.
  • 58 Rintala E, Kauppila M, Seppala PP. et al. Protein C substitution in sepsis-associated purpura fulminans. Crit Care Med 2000; 28: 2373-8.
  • 59 Rychlik R, Pfeil B. Sozioökonomische Relevanz der Sepsis in Deutschland. Gesundh Ökon Qual manag 2000; 5: S67-72.
  • 60 Schmid A, Burchardi H, Clouth J. et al. Burden of Illness imposed by severe sepsis in Germany. Eur J Health Econom 2000; 3: 77-82.
  • 61 Uchiba M, Okajima K. Antihrombin (AT III) prevents LPS-induced pulmonary vascular injury: Novel biological activity of AT III. Semin Thromb Hemaost 1997; 23: 583-90.
  • 62 Warren BL, Eid A, Singer P. et al. High-dose antithrombin III in severe sepsis. JAMA 2001; 286: 1869-78.
  • 63 White B, Livingstone W, Murphy C. et al. An openlabel study of the role of adjuvant hemostatic support with protein C replacement therapy in purpura fulminans-associated meningococcemia. Blood 2000; 96: 3719-24.
  • 64 Yan SB, Dhainaut JF. Activated protein C in severe sepsis. Crit Care Med 2001; 29: S69-74.
  • 65 Yan SB, Dhainaut JF. Activated protein C versus protein C in severe sepsis. Crit Care Med 2001; 7: S69-74.
  • 66 Yan SB, Grinell BW. Antithrombotic and anti-inflammatory roles oft the protein C anticoagulant pathway. J Autoimm 2000; 15: 113-6.
  • 67 Yan SB, Helterbrand JD, Hartman DL. et al. Low levels of protein C are associated with poor outcomes in severe sepsis. Chest 2001; 120: 915-22.