Osteologie 2009; 18(01): 45-50
DOI: 10.1055/s-0037-1619874
Original und Übersichtsarbeiten
Schattauer GmbH

Arthrosegrad von Leptin-defizienten ob/ob-Mäusen im Wachstumsalter bei unterschiedlichem Körpergewicht

Osteoarthritis of young leptin-deficient ob/ob mice in response of body weight
H. Heep
1   Klinik für Orthopädie, Universität Duisburg-Essen, China
,
J. Xu
2   Department of Orthopaedics, the second affiliated hospital of Sun Yat-Sen University Guangzhou, China
,
S. Hofmeister
1   Klinik für Orthopädie, Universität Duisburg-Essen, China
,
F. Henschke
3   Pathologisches Institut am St. Johannisstift, Paderborn
,
Ch. Wedemeyer
1   Klinik für Orthopädie, Universität Duisburg-Essen, China
› Author Affiliations
Further Information

Publication History

eingereicht: 27 January 2008

angenommen nach Revision: 03 January 2009

Publication Date:
28 December 2017 (online)

Zusammenfassung

Einleitung

Das in den Fettzellen produzierte Hormon Leptin reguliert die Reifung und Entwicklung des Knochens. Nicht bekannt ist jedoch dessen Einfluss auf das wachsende Skelett und die Gelenke. Unter Ausschluss der hormonellen Wirkung von Leptin wird die Auswirkung unterschiedlichen Körpergewichtes auf die Arthroseentstehung während der Wachstumsphase untersucht.

Material und Methode

Beginnend mit einem Alter von fünf Wochen wurden zwei Gruppen von je 20 weiblichen Leptin-defizienten ob/ob-Mäusen untersucht. Gruppe A erfuhr keine Einschränkung der Futtermenge, während Gruppe B einer kontrollierten Diät unterzogen wurde. Die Strukturen der Hüftund Knie-Gelenke wurden histomorphologisch mittels Hämatoxylin-Eosin-Färbung (HEFärbung) und Elastica-van-Gieson-Färbung (EVG) untersucht. Die Einteilung der Arthrose erfolgte nach dem Schema nach Otte von 1969. Es werden insgesamt vier Stadien unterschieden.

Ergebnisse

Im Alter von 20 Wochen lag das Körpergewicht der Gruppe A signifikant höher als in der Gruppe B (p < 0,05) und es zeigt sich ein signifikanter Unterschied der beiden Gruppen im Arthrosegrad (p > 0,05).

Diskussion

Leptin stellt einen wichtigen Faktor für eine positive Korrelation zwischen der Belastung und der Knochenmasse dar. Wird dies berücksichtigt, kommt es in Gruppe B zu einem höheren Arthrosegrad, so dass wir vermuten, dass bereits in der Knochen- und Gelenk reifung der Einfluss von Leptin von entscheidender Bedeutung ist, und dass übermäßiges Übergewicht im Jugendalter mit relativer Leptininsuffizienz zu vorzeitigem Gelenkverschleiß führt.

Summary

Introduction

Leptin was found in fat cells and regulates bone development and remodeling. There is so far no agreement concerning the effect of leptin in the early stages of life. This study was performed to evaluate the effects of body weight in leptin-deficient ob/ ob mice at the same stage of growth.

Material and method

Twenty ob/ob female mice were studied per group (A = diet ad libitum, B = controlled diet), starting at an age of five weeks. The architecture of hip and knee was assessed by histomorphometry in Hematoxylin- Eosin- und Elastica van Gieson-Colouring. The osteoarthritis was classified according to Otte 1969, who distinguishes 4 levels.

Results

Due to diet ad libitum, the weightbearing of the mice in Group A was significantly (p < 0.05) greater than those with a controlled diet (Group B) at the age of twenty weeks (p < 0.05). A significant difference was found between the two groups in developing an osteoarthritis (p < 0.05).

Discussion

The presence of leptin was the pre-condition for a positive correlation between loading and bone mass. The increased osteoarthritis in the group B suggests that increased body mass in young people with relative Leptin deficiency is an important factor for the development of osteoarthritis.

 
  • Literatur

  • 1 Felson DT. et al. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 1993; 08 (05) 567-573.
  • 2 Manninen P. et al. Overweight, gender and knee osteoarthritis. Int J Obes Relat Metab Disord 1996; 20 (06) 595-597.
  • 3 Rooney PJ. Osteoarthritis and overweight. J Rheumatol 1995; 22 (10) 2006.
  • 4 Sturmer T, Gunther KP, Brenner H. Obesity, overweight and patterns of osteoarthritis: the Ulm Osteoarthritis Study. J Clin Epidemiol 2000; 53 (03) 307-313.
  • 5 Amling M. et al. Leptin: factor in the central nervous system regulation of bone mass. Development of a new understanding of bone remodeling, skeletal reconstruction, skeletal preservation and skeletal repair. Orthopade 2001; 30 (07) 418-424.
  • 6 Zhang Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372 6505 425-432.
  • 7 Ahima RS, Flier JS. Leptin. Annu Rev Physiol 2000; 62: 413-437.
  • 8 Hamrick MW, Ferrari SL. Leptin and the sympathetic connection of fat to bone. Osteoporos Int 2008; 19 (07) 905-912 Epub 2007 Oct 9.
  • 9 Hamrick MW. et al. Age-related loss of muscle mass and bone strength in mice is associated with a decline in physical activity and serum leptin. Bone 2006; 39 (04) 845-853.
  • 10 Reid IR. Relationships between fat and bone. Osteoporos Int 2008; 19 (05) 595-606 Epub 2007 Oct 27.
  • 11 Boghossian S. et al. Hypothalamic clamp on insulin release by leptin-transgene expression. Peptides 2006; 27 (12) 3245-3254.
  • 12 Bhatt R. et al. Long-term kindled seizures induce alterations in hematopoietic functions: role of serum leptin. Epilepsy Res 2005; 65 (03) 169-178.
  • 13 Lam QL, Lu L. Role of leptin in immunity. Cell Mol Immunol 2007; 04 (01) 1-13.
  • 14 Popovic V, Casanueva FF. Leptin, nutrition and reproduction: new insights. Hormones (Athens) 2002; 01 (04) 204-217.
  • 15 Kitade M. et al. Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats. Hepatology 2006; 44 (04) 983-991.
  • 16 Iwamoto I. et al. Relationships between serum leptin level and regional bone mineral density, bone metabolic markers in healthy women. Acta Obstet Gynecol Scand 2000; 79 (12) 1060-1064.
  • 17 Odabasi E. et al. Plasma leptin concentrations in postmenopausal women with osteoporosis. Eur J Endocrinol 2000; 142 (02) 170-173.
  • 18 Blum M. et al. Leptin, body composition and bone mineral density in premenopausal women. Calcif Tissue Int 2003; 73 (01) 27-32.
  • 19 Sato M. et al. Association between serum leptin concentrations and bone mineral density, and biochemical markers of bone turnover in adult men. J Clin Endocrinol Metab 2001; 86 (11) 5273-5276.
  • 20 Rauch F. et al. Does leptin have an effect on bone in adult women?. Calcif Tissue Int 1998; 63 (06) 453-455.
  • 21 Martini G. et al. Influence of insulin-like growth factor-1 and leptin on bone mass in healthy postmenopausal women. Bone 2001; 28 (01) 113-117.
  • 22 Kume K. et al. Potential role of leptin in endochondral ossification. J Histochem Cytochem 2002; 50 (02) 159-169.
  • 23 Maor G. et al. Leptin acts as a growth factor on the chondrocytes of skeletal growth centers. J Bone Miner Res 2002; 17 (06) 1034-1043.
  • 24 Nakajima R. et al. Effects of leptin to cultured growth plate chondrocytes. Horm Res 2003; 60 (02) 91-98.
  • 25 Chen MM. et al. Effect of treadmill exercise on tibial cortical bone in aged female rats: a histomorphometry and dual energy x-ray absorptiometry study. Bone 1994; 15 (03) 313-319.
  • 26 Iwamoto J, Takeda T, Ichimura S. Effect of exercise on tibial and lumbar vertebral bone mass in mature osteopenic rats: bone histomorphometry study. J Orthop Sci 1998; 03 (05) 257-263.
  • 27 Yeh JK. et al. Effect of treadmill exercise on vertebral and tibial bone mineral content and bone mineral density in the aged adult rat: determined by dual energy X-ray absorptiometry. Calcif Tissue Int 1993; 52 (03) 234-238.
  • 28 Warner SE. et al. Botox induced muscle paralysis rapidly degrades bone. Bone 2006; 38 (02) 257-264.
  • 29 Gross TS. et al. Non-invasive loading of the murine tibia: an in vivo model for the study of mechanotransduction. J Bone Miner Res 2002; 17 (03) 493-501.
  • 30 Forwood MR. et al. Modification of the in vivo fourpoint loading model for studying mechanically induced bone adaptation. Bone 1998; 23 (03) 307-310.
  • 31 Forwood MR, Turner CH. Skeletal adaptations to mechanical usage: results from tibial loading studies in rats. Bone 1995; 17 (Suppl. 04) s197S-205S.
  • 32 Arden NK. et al. The association between osteoarthritis and osteoporotic fracture: the Chingford Study. Br J Rheumatol 1996; 35 (12) 1299-1304.
  • 33 Ogueh O. et al. The relationship between leptin concentration and bone metabolism in the human fetus. J Clin Endocrinol Metab 2000; 85 (05) 1997-1999.
  • 34 Ducy P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000; 100 (02) 197-207.
  • 35 Foldes J, Shih MS, Levy J. Bone structure and calcium metabolism in obese Zucker rats. Int J Obes Relat Metab Disord 1992; 16 (02) 95-102.
  • 36 Picherit C. et al. Isoflavone consumption does not increase the bone mass in osteopenic obese female zucker rats. Ann Nutr Metab 2003; 47 (02) 70-77.
  • 37 Tamasi JA. et al. Characterization of bone structure in leptin receptor-deficient Zucker (fa/fa) rats. J Bone Miner Res 2003; 18 (09) 1605-1611.
  • 38 Cornish J. et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 2002; 175 (02) 405-415.
  • 39 Muir H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays 1995; 17 (12) 1039-1048.
  • 40 Sandy JD. et al. In vivo and in vitro stimulation of chondrocyte biosynthetic activity in early experimental osteoarthritis. Arthritis Rheum 1984; 27 (04) 388-397.
  • 41 Dumond H. et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum 2003; 48 (11) 3118-3129.
  • 42 Scharstuhl A. et al. Inhibition of endogenous TGFbeta during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol 2002; 169 (01) 507-514.
  • 43 Machwate M. et al. Insulin-like growth factor-I increases trabecular bone formation and osteoblastic cell proliferation in unloaded rats. Endocrinology 1994; 134 (03) 1031-1038.
  • 44 Zerath E. et al. TGF-beta2 prevents the impaired chondrocyte proliferation induced by unloading in growth plates of young rats. Life Sci 1997; 61 (24) 2397-2406.
  • 45 Busso N. et al. Leptin signaling deficiency impairs humoral and cellular immune responses and attenuates experimental arthritis. J Immunol 2002; 168 (02) 875-882.
  • 46 Simha V. et al. Effect of subcutaneous leptin replacement therapy on bone metabolism in patients with generalized lipodystrophy. J Clin Endocrinol Metab 2002; 87 (11) 4942-4945.
  • 47 Farooqi IS. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999; 341 (12) 879-884.
  • 48 Thomas T, Burguera B. Is leptin the link between fat and bone mass?. J Bone Miner Res 2002; 17 (09) 1563-1569.
  • 49 Figenschau Y. et al. Human articular chondrocytes express functional leptin receptors. Biochem Biophys Res Commun 2001; 287 (01) 190-197.