Osteologie 2009; 18(01): 41-44
DOI: 10.1055/s-0037-1619875
Originalund Übersichtsarbeiten
Schattauer GmbH

Knochen und Entzündung

Molekulare Mechanismen, neue pathophysiologische Stoffwechselwege und innovative TherapieansätzeBone and inflammationmolecular mechanisms, new pathophysiological relevant metabolic pathways and future innovative therapies
U. Lange
1   Kerckhoff-Klinik, Abteilung Rheumatologie, Klinische Immunologie, Physikalische Medizin, Osteologie (Justus-Liebig-Universität Gießen), Bad Nauheim
,
E. Neumann
1   Kerckhoff-Klinik, Abteilung Rheumatologie, Klinische Immunologie, Physikalische Medizin, Osteologie (Justus-Liebig-Universität Gießen), Bad Nauheim
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht: 22. Februar 2008

angenommen nach Revision: 12. Juni 2008

Publikationsdatum:
28. Dezember 2017 (online)

Zusammenfassung

Die Osteoporose ist gekennzeichnet durch geringe Knochendichte und mikroarchitektonische Veränderungen mit konsekutiv erhöhtem Frakturrisiko. Der Knochenumbau zeichnet sich durch ein ausgeglichenes Verhältnis zwischen Knochenresorption und Knochenaufbau aus. Auf zellulärer Ebene sind die Osteoblasten für den Knochenaufbau und die Osteoklasten für den Knochenabbau verantwortlich. Über ein fein abgestimmtes Zusammenspiel von molekularen Mechanismen, Zytokinen, Hormonen und Wachstumsfaktoren wird dabei die Knochenhomöostase gewährleistet. Das RANK/RANKL/OPG-System ist aktiv an der Reifung von Osteoklasten beteiligt und ihm kommt eine wichtige Rolle bezüglich der meisten pathophysiologischen Mechanismen bei der Osteoporose zu. Die vorliegende Übersichtsarbeit beschreibt die bekannten molekularen Mechanismen und pathophysiologischen Stoffwechselwege dieser Remodellingprozesse, insbesondere unter dem Einfluss von Entzündungsmediatoren und zeigt zukünftige innovative Therapieoptionen auf.

Summary

Osteoporosis is characterized by low bone mass and by changes in the microarchitecture of the bone with consecutive high risk for fractures. Bone remodelling is characterized by a balance between bone resorption and bone formation. The osteoblasts are responsible for bone synthesis and the osteoclasts for bone resorption. A finely adjusted interaction between molecular mechanisms leads, via cytokines, hormones and growth factors, to an homeostasis of the bone metabolism. The RANK/RANKL/OPG-system is actively involved in the differentiation and function of osteoclasts and seems to play a central role in most pathophysiological mechanisms that are active in osteoporosis. The present overview describes the known pathophysiological relevant metabolic pathways in this remodelling process especially the effect of inflammation on bone metabolism and present future innovative therapy options.

 
  • Literatur

  • 1 Boyle WJ. et al. Osteoclast differentiation and activation. Nature 2003; 423: 337-342.
  • 2 Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci 2006; 102: 385-396.
  • 3 Teitelbaum SL. Bone resorption by osteoclasts. Science 2000; 289: 1504-1508.
  • 4 Neumann E, Schett G. Knochenstoffwechsel. Z Rheumatol 2007; 66: 286-289.
  • 5 Bord S. et al. The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone 2003; 32: 136-141.
  • 6 Charatcharoenwitthaya N. et al. Effect of blockade of TNF-alpha and Interleukin-1 action on bone resorption in early postmenopausal women. J Bone Min Res 2007; 22: 724-729.
  • 7 Gravallese EM. et al. The role of TNF-receptor family members and other TRAF-dependend receptors in bone resorption. Arthritis Res 2001; 03: 6-12.
  • 8 Kostenuik PJ. Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr Opin Pharmacol 2005; 05: 618-625.
  • 9 Schett G. et al. High-sensitive C-reactive protein and risk of nontraumatic fractures in the Bruneck study. Arch Intern Med 2006; 166: 2495-2501.
  • 10 Cohen Jr MM. The new bone biology: pathologic, molecular, and clinical correlates. Am J Med Gent A 2006; 140: 2646-2706.
  • 11 Sambrook P, Cooper C. Osteoporosis. Lancet 2006; 367: 2010-2018.
  • 12 Nüsslein H. et al. Zytokine in der Rheumatologie. Klinische Bedeutung und therapeutische Prinzipien. Bremen: UNI-MED; 2001
  • 13 Lange U, Müller-Ladner U. Glukokortikoid-induzierte Osteoporose. Z Rheumatol 2007; 66: 129-138.
  • 14 Lam J. et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000; 106: 1481-1488.
  • 15 Goldring SR. Inflammatory mediators as essential elements in bone remodeling. Calcif Tissue Int 2003; 73: 97-100.
  • 16 Li P. et al. RANK signalling is not required for TNF-alpha-mediated increase in CD11(hi) osteoclast precursors but is essential for mature osteoclast formation in TNF-alpha-mediated inflammatory arthritis. J Bone Miner Res 2004; 19: 207-213.
  • 17 Ritchlin CT. et al. Mechanisms of TNF-alpha-and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 2003; 111: 821-831.
  • 18 Hofbauer LC. Pathophysiology of RANK ligand (RANKL) and osteoprotegerin (OPG). Ann Endocrinol (Paris) 2006; 67: 139-141.
  • 19 Neumann E. et al. The RANK/RANKL/osteoprotegerin system in rheumatoid arthritis: new insights from animal models. Arthritis Rheum 2005; 52: 2960-2967.
  • 20 Hofbauer L, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 2004; 292: 490-495.
  • 21 Lange U. et al. Increase in bone mineral density of patients with rheumatoid arthritis treated with anti-TNF-αantibody: a prospective open-label pilot study. Rheumatol 2005; 44: 1546-1558.
  • 22 Allali F. et al. Increase in bone mineral density of patients with spondylarthropathy treated with anti-tumour necrosis factor α. Ann Rheum Dis 2003; 62: 347-349.
  • 23 Catrina AI. et al. Anti-tumor necrosis factor therapy increases synovial osteoprotegerin expression in rheumatoid arthritis. Arthritis Rheum 2006; 54: 76-81.
  • 24 Vis M. et al. Evaluation of bone mineral density, bone metabolism, osteoprotegerin and RANKL serum levels during treatment with infliximab in patients with rheumatoid arthritis. Ann Rheum Dis 2006; 65: 1495-1499.
  • 25 Sato K. et al. Th 17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 2006; 203: 2673-2682.
  • 26 Takayanagi H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000; 408: 600-605.
  • 27 Kotake S. et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999; 103: 1345-1352.
  • 28 Lubberts E. et al. Treatment with a neutralizing antimurine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 2004; 50: 650-659.
  • 29 Lubberts E. et al. The role of T-Cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther 2005; 07: 29-37.
  • 30 Liu XH. et al. Interactive effect of interleukin-6 and prostaglandine E2 on osteoclastogenesis via OPG/ RANKL/RANK system. Ann N Y Acad Sci 2006; 1068: 225-233.
  • 31 Wong PK. et al. Interleukin-6 modulates production of T lyphocytes-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum 2006; 54: 158-168.
  • 32 Kamijo S. et al. Amelioration of bone loss in collageninduced arthritis by neutralizing anti-RANKL monoclonal antibody. Biochem Biophys Res Commun 2006; 347: 124-132.
  • 33 McClung MR. Inhibition of RANKL as a treatment for osteoporosis preclinical and early clinical studies. Curr Osteoporos Rep 2006; 04: 28-33.
  • 34 Miller P. et al. Effect of Denosumab on Bone Mineral Density and Bone Turnover Markers: 48-Month Results. 29th Annual Meeting of the American Society for Bone and Mineral Research. Honolulu, Hawai, USA: September 16-19, 2007. Presentation 1206.