Osteologie 2009; 18(01): 16-23
DOI: 10.1055/s-0037-1619878
Osteologie und Labor
Schattauer GmbH

Laboruntersuchungen bei metabolischen Osteopathien

Rachitis und Osteomalazie, Hypophosphatasie, M. PagetLaboratory testing in metabolic bone diseases – rickets and osteomalacia, hypophosphatasia, Paget´s disease of bone
F. Jakob
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
R. Ebert
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
L. Seefried
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
Ch. Beck
2   Funktionsbereich Pädiatrische Rheumatologie, Immunologie und Osteologie, Kinderklinik und Poliklinik, Universität Würzburg
,
H. Girschick
2   Funktionsbereich Pädiatrische Rheumatologie, Immunologie und Osteologie, Kinderklinik und Poliklinik, Universität Würzburg
› Author Affiliations
Further Information

Publication History

eingereicht: 13 January 2009

angenommen: 21 January 2009

Publication Date:
28 December 2017 (online)

Zusammenfassung

Bei Verdacht auf metabolische Knochenerkrankungen werden leitliniengerecht die Parameter des sogenannten Basislabors zur Screening-Diagnostik eingesetzt. Die Aktivität der alkalischen Phosphatase (AP) und die Serum-Spiegel für Kalzium und Phosphat geben erste Informationen zum Knochenstoffwechsel. Auffällige Parameter im Basislabor und die klinische Problemstellung, beurteilt durch einen erfahrenen Spezialisten in osteologischen Zentren sind die Eingangskriterien für eine erweiterte Diagnostik. Klassische Konstellationen sind die isoliert erhöhte oder erniedrigte AP bei Morbus Paget und Hypophosphatasie, der sekundäre Hyperparathyreoidismus bei Rachitis/Osteomalazie, und Phosphatverlust-Syndrome mit inadäquat niedrigem Parathormon und Vitamin-D-Hormon. Die Untersuchung der Kalzium- und Phosphat-Bilanz und von FGF23 ermöglicht die Differenzialdiagnose der Rachitis und Osteomalazie. Die genannten Parameter erlauben eine breite und sichere Differenzialdiagnose, spezielle Parameter sind nur selten notwendig. Verlaufsuntersuchungen bei chronischen Erkrankungen sind oft mit einzelnen Markern in größeren Abständen zuverlässig.

Summary

Laboratory testing of metabolic bone disease is initiated using a screening panel of clinical chemistry parameters according to osteoporosis guidelines, comprising measurements of alkaline phosphatase (AP) and of serum levels for calcium and inorganic phosphate, to get basic information about bone metabolism. Based on these results and on the clinical query the expansion of laboratory testing using specific bone markers and hormone levels is evaluated by a specialist for metabolic bone disease and osteology.The classical constellations found are e.g. elevated or low AP activity levels in Paget´s disease of bone or hypophosphatasia respectively, secondary hyperparathyroidism in rickets and osteomalacia and phosphate wasting syndromes showing inadequately low levels of parathyroid hormone and vitamin D-hormone. Measuring the balance of calcium and phosphate metabolism and serum FGF23 levels allows for differential diagnosis of rickets and osteomalacia. Using these parameters a broad differential diagnosis can be covered and only rarely is there a need for further expansion of special bone marker measurement. Follow-up tests in chronic diseases can often be reliably done using single bone markers or a reduced panel of the above.

 
  • Literatur

  • 1 Seibel MJ. Biochemical markers of bone turnover, part I: biochemistry and variability. Clin Biochem Rev 2005; 26 (04) 97-122.
  • 2 Seibel MJ. Biochemical markers of bone turnover, part II: Clinical Applications in the Management of Osteoporosis. Clin Biochem Rev 2006; 27 (03) 123-138.
  • 3 Fischer PR, Thacher TD, Pettifor JM. Pediatric vitamin D and calcium nutrition in developing countries. Rev Endocr Metab Disord 2008; 09 (03) 181-192.
  • 4 Jakob F. 1,25(OH)2-vitamin D3. The vitamin D hormone. Internist (Berl) 1999; 40 (04) W414-W430.
  • 5 Jakob F. Metabolic bone diseases. Internist (Berl) 2007; 48 (10) 1101-1117.
  • 6 Prentice A, Goldberg GR, Schoenmakers I. Vitamin D across the lifecycle: physiology and biomarkers. Am J Clin Nutr 2008; 88 (02) 500S-506S.
  • 7 Ebert R, Schutze N, Adamski J, Jakob F. Vitamin D signaling is modulated on multiple levels in health and disease. Mol Cell Endocrinol 2006; 248 (1–2): 149-159.
  • 8 Seufert J, Ebert K, Muller J. et al. Octreotide therapy for tumor-induced osteomalacia. N Engl J Med 2001; 345 (26) 1883-1888.
  • 9 Tebben PJ, Kalli KR, Cliby WA. et al. Elevated fibroblast growth factor 23 in women with malignant ovarian tumors. Mayo Clin Proc 2005; 80 (06) 745-751.
  • 10 Ebert R, Vogelsang A, Mandery K. et al. Erbliche und erworbene Erkrankungen des Phosphatstoffwechsels. Osteologie 2006; 15 (01) 33-42.
  • 11 Imel EA, Econs MJ. Fibrous dysplasia, phosphate wasting and fibroblast growth factor 23. Pediatr Endocrinol Rev 2007; 04 (Suppl. 04) 434-439.
  • 12 Riminucci M, Collins MT, Fedarko NS. et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 2003; 112 (05) 683-692.
  • 13 Romagnoli E, Mascia ML, Cipriani C. et al. Short and long-term variations in serum calciotropic hormones after a single very large dose of ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) in the elderly. J Clin Endocrinol Metab 2008; 93 (08) 3015-3020.
  • 14 Bischoff-Ferrari HA. Optimal serum 25-hydroxyvitamin D levels for multiple health outcomes. Adv Exp Med Biol 2008; 624: 55-71.
  • 15 Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357 (03) 266-281.
  • 16 Chen JS, Sambrook PN, March L. et al. Hypovitaminosis D and parathyroid hormone response in the elderly: effects on bone turnover and mortality. Clin Endocrinol (Oxf) 2008; 68 (02) 290-298.
  • 17 Cole DE, Webb S, Chan PC. Update on parathyroid hormone: new tests and new challenges for external quality assessment. Clin Biochem 2007; 40 (9–10): 585-590.
  • 18 Souberbielle JC, Friedlander G, Cormier C. Practical considerations in PTH testing. Clin Chim Acta 2006; 366 (1–2): 81-89.
  • 19 Thacher TD, Fischer PR, Strand MA, Pettifor JM. Nutritional rickets around the world: causes and future directions. Ann Trop Paediatr 2006; 26 (01) 1-16.
  • 20 Marsell R, Grundberg E, Krajisnik T. et al. Fibroblast growth factor-23 is associated with parathyroid hormone and renal function in a population-based cohort of elderly men. Eur J Endocrinol 2008; 158 (01) 125-129.
  • 21 Stubbs J, Liu S, Quarles LD. Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease. Semin Dial 2007; 20 (04) 302-308.
  • 22 Yamashita T. Structural and biochemical properties of fibroblast growth factor 23. Ther Apher Dial 2005; 09 (04) 313-318.
  • 23 Goebel S, Lienau J, Rammoser U. et al. FGF23 is a putative marker for bone healing and regeneration. J Orthop Res. 2009 in press.
  • 24 Mornet E. Hypophosphatasia. Orphanet J Rare Dis 2007; 02: 40.
  • 25 Girschick HJ, Mornet E, Beer M. et al. Chronic multifocal non-bacterial osteomyelitis in hypophosphatasia mimicking malignancy. BMC Pediatr 2007; 07: 3.
  • 26 Whyte MP. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 1994; 15 (04) 439-461.
  • 27 Fedde KN, Whyte MP. Alkaline phosphatase (tissue-nonspecific isoenzyme) is a phosphoethanolamine and pyridoxal-5’-phosphate ectophosphatase: normal and hypophosphatasia fibroblast study. Am J Hum Genet 1990; 47 (05) 767-775.
  • 28 Whyte MP, Landt M, Ryan LM. et al. Alkaline phosphatase: placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5’-phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J Clin Invest 1995; 95 (04) 1440-1445.
  • 29 Whyte MP, Mahuren JD, Fedde KN. et al. Perinatal hypophosphatasia: tissue levels of vitamin B6 are unremarkable despite markedly increased circulating concentrations of pyridoxal-5’-phosphate. Evidence for an ectoenzyme role for tissue-nonspecific alkaline phosphatase. J Clin Invest 1988; 81 (04) 1234-1239.
  • 30 Caswell AM, Whyte MP, Russell RG. Hypophosphatasia and the extracellular metabolism of inorganic pyrophosphate: clinical and laboratory aspects. Crit Rev Clin Lab Sci 1991; 28 (03) 175-232.
  • 31 Whyte MP. Hypophosphatasia. In: Scriver CR, Beaudet AL, Sly S. The metabolic and molecular basis of inherited disease. New York: McGrawHill; 1995: 4095-4111.
  • 32 Layfield R. The molecular pathogenesis of Paget disease of bone. Expert Rev Mol Med 2007; 09 (27) 1-13.
  • 33 Whyte MP. Paget’s disease of bone and genetic disorders of RANKL/OPG/RANK/NF-kappaB signaling. Ann N Y Acad Sci 2006; 1068: 143-164.
  • 34 Helfrich MH, Hocking LJ. Genetics and aetiology of Pagetic disorders of bone. Arch Biochem Biophys 2008; 473 (02) 172-182.
  • 35 Eastell R. Biochemical markers of bone turnover in Paget’s disease of bone. Bone 1999; 24 (Suppl. 05) 49S-50S.
  • 36 Seefried L, Jakob F. Physiologie des Knochenstoffwechsels unter besonderer Berücksichtigung des RANK/RANKL/OPG-Signalwegs. In: Jakob F. Hrsg. Morbus Paget des Knochens. Bremen: Uni-Med; 2006
  • 37 Hosking D, Lyles K, Brown JP. et al. Long-term control of bone turnover in Paget’s disease with zoledronic acid and risedronate. J Bone Miner Res 2007; 22 (01) 142-148.
  • 38 Reid IR, Miller P, Lyles K. et al. Comparison of a single infusion of zoledronic acid with risedronate for Paget’s disease. N Engl J Med 2005; 353 (09) 898-908.