Osteologie 2009; 18(04): 293-303
DOI: 10.1055/s-0037-1619905
Seltene Knochenerkrankungen
Schattauer GmbH

Hereditäre Erkrankungen mit Gelenkhypermobilität

Hereditary disorders with hypermobility
G. Schwabe
1   Kinderklinik, Klinik für Allgemeine Pädiatrie, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin
,
D. Renz
2   Klinik für Strahlenheilkunde, Charité - Universitätsmedizin Berlin
,
L. Graul-Neumann
3   Institut für Medizinische Genetik, Charité – Universitätsmedizin Berlin
,
P. Robinson
3   Institut für Medizinische Genetik, Charité – Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

eingereicht: 31 August 2009

angenommen: 10 September 2009

Publication Date:
30 December 2017 (online)

Zusammenfassung

Unter Gelenkhypermobilität versteht man die Überbeweglichkeit eines oder mehrerer Gelenke. Hypermobilität ist oftmals mit extraartikulären Begleitmanifestationen vergesellschaftet und tritt gehäuft bei hereditären Erkrankungen des Bindegewebes und Skeletts, wie Marfan-Syndrom (MFS), marfanoiden Erkrankungen, Ehlers-Danlos-Syndrom (EDS), Osteogenesis imperfecta (OI) und weiteren Skelettdysplasien auf. Während das MFS durch Fibrillin-1 (FBN1)-Mutationen hervorgerufen wird, führen Mutationen in den TGFbeta-Rezeptoren TGFBR1 und TGFBR2 zum marfanähnlichen Loeys-Dietz-Syndrom (LDS). Untersuchungen an Mausmodellen und bei Patienten zeigen, dass eine erhöhte Verfügbarkeit von Transforming-Growth- Factor (TGF)-beta ein wichtiger Faktor bei der Pathogenese des MFS und LDS ist. Demgegenüber werden die unterschiedlichen EDS- und OI-Formen durch Mutationen verursacht, die die Synthese und Modifikation verschiedener fibrillärer Kollagene betreffen. In diesem Übersichtsartikel präsentieren wir eine aktuelle Zusammenfassung bedeutsamer klinischer und genetischer Erkenntnisse von hereditären Erkrankungen des Bindegewebes und Skeletts mit Gelenkhypermobilität.

Summary

Joint hypermobility refers to an increased mobility of one or more joints. Joint hypermobility is often associated with extraarticular manifestations and presents in connective tissue and skeletal disorders, including Marfan Syndrome (MFS), Ehlers-Danlos Syndrome (EDS), Osteogenesis imperfecta (OI) and a variety of skeletal dysplasias. Whereas MFS is caused by Fibrillin-1 (FBN1) mutations, mutations of the TGF beta receptors TGFBR1 and TGFBR2 cause the Loeys Dietz Syndrome (LDS). Analysis of mouse models and patients indicate that Transforming Growth Factor (TGF) beta plays an important role in the pathogenesis of MFS and LDS. In contrast, mutations of genes that affect the synthesis and modification of several fibrillary collagens lead to distinct EDS and OI forms. In this review we present a summary of important clinical and genetic findings of hereditary connective tissue and skeletal disorders with joint hypermobility.

 
  • Literatur

  • 1 Kirk JA, Ansell BM, Bywaters EG. The hypermobility syndrome. Musculoskeletal complaints associated with generalized joint hypermobility. Ann Rheum Dis 1967; 26: 419-425.
  • 2 Beighton P, Solomon L, Soskolne CL. Articular mobility in an African population. Ann Rheum Dis 1973; 32: 413-418.
  • 3 Marfan AB. Un cas de déformation congénital des quatre membres plus prononcée aux extrémitiés caractérisée par l’allongement des os avec un certain degré d’amincissement. Bull Mém Soc Méd Hôp (Paris) 1896; 13: 220-226.
  • 4 Silverman DI, Burton KJ, Gray J. et al. Life expectancy in the Marfan syndrome. Am J Cardiol 1995; 75: 157-160.
  • 5 Loeys B, De Backer J, Van Acker P. et al. Comprehensive molecular screening of the FBN1 gene favors locus homogeneity of classical Marfan syndrome. Hum Mutat 2004; 24: 140-146.
  • 6 Sood S, Eldadah ZA, Krause WL. et al. Mutation in fibrillin-1 and the Marfanoid-craniosynostosis (Shprintzen-Goldberg) syndrome. Nat Genet 1996; 12: 209-211.
  • 7 Faivre L, Gorlin RJ, Wirtz MK. et al. In frame fibrillin-1 gene deletion in autosomal dominant Weill- Marchesani syndrome. J Med Genet 2003; 40: 34-36.
  • 8 Neptune ER, Frischmeyer PA, Arking DE. et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 2003; 33: 407-411.
  • 9 Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 2005; 21: 659-693.
  • 10 Ades L. Guidelines for the diagnosis and management of Marfan syndrome. Heart Lung Circ 2007; 16: 28-30.
  • 11 Shores J, Berger KR, Murphy EA, Pyeritz RE. Progression of aortic dilatation and the benefit of longterm beta-adrenergic blockade in Marfan’s syndrome. N Engl J Med 1994; 330: 1335-1341.
  • 12 Yetman AT, Bornemeier RA, McCrindle BW. Longterm outcome in patients with Marfan syndrome: is aortic dissection the only cause of sudden death?. J Am Coll Cardiol 2003; 41: 329-332.
  • 13 Habashi JP, Judge DP, Holm TM. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 2006; 312: 117-121.
  • 14 Brooke BS, Habashi JP, Judge DP. et al. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med 2008; 358: 2787-2795.
  • 15 Gott VL, Greene PS, Alejo DE. et al. Replacement of the aortic root in patients with Marfan’s syndrome. N Engl J Med 1999; 340: 1307-1313.
  • 16 Kainulainen K, Karttunen L, Puhakka L. et al. Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nat Genet 1994; 06: 64-69.
  • 17 Faivre L, Collod-Beroud G, Callewaert B. et al. Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24–32 mutation. Eur J Hum Genet 2009; 17: 491-501.
  • 18 Hecht F, Beals RK. “New” syndrome of congenital contractural arachnodactyly originally described by Marfan in 1896. Pediatrics 1972; 49: 574-579.
  • 19 Putnam EA, Zhang H, Ramirez F. et al. Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. Nat Genet 1995; 11: 456-458.
  • 20 Loeys BL, Chen J, Neptune ER. et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 2005; 37: 275-281.
  • 21 Loeys BL, Schwarze U, Holm T. et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med 2006; 355: 788-798.
  • 22 Robinson PN, Neumann LM, Demuth S. et al. Shprintzen-Goldberg syndrome: fourteen new patients and a clinical analysis. Am J Med Genet A 2005; 135: 251-262.
  • 23 Van Buggenhout G, Fryns JP. Lujan-Fryns syndrome (mental retardation, X-linked, marfanoid habitus). Orphanet J Rare Dis 2006; 01: 26.
  • 24 Raymond FL, Tarpey PS, Edkins S. et al. Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-linked mental retardation associated with a Marfanoid habitus. Am J Hum Genet 2007; 80: 982-987.
  • 25 Schwartz CE, Tarpey PS, Lubs HA. et al. The original Lujan syndrome family has a novel missense mutation (p.N1007S) in the MED12 gene. J Med Genet 2007; 44: 472-477.
  • 26 Le Goff C, Morice-Picard F, Dagoneau N. et al. ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-beta bioavailability regulation. Nat Genet 2008; 40: 1119-1123.
  • 27 Steinmann B, Royce P, Superti-Furga A. The Ehlers- Danlos syndrome. In: Royce P, Steinmann B. eds. Connective Tissue and its Heritable Disorders. 2nd ed.. New York: Wiley-Liss, Inc; 2002: 431-523.
  • 28 Beighton P. Ehlers-Danlos syndrome. Ann Rheum Dis 1970; 29: 332-333.
  • 29 Beighton P, de Paepe A, Danks D. et al. International Nosology of Heritable Disorders of Connective Tissue, Berlin, 1986. Am J Med Genet 1988; 29: 581-594.
  • 30 Beighton P, De Paepe A, Steinmann B. et al. EhlersDanlos syndromes: revised nosology, Villefranche, 1997. Ehlers-Danlos National Foundation (USA) and Ehlers-Danlos Support Group (UK). Am J Med Genet 1998; 77: 31-37.
  • 31 Malfait F, De Paepe A. Molecular genetics in classic Ehlers-Danlos syndrome. Am J Med Genet C Semin Med Genet 2005; 139C: 17-23.
  • 32 Zweers MC, Bristow J, Steijlen PM. et al. Haploinsufficiency of TNXB is associated with hypermobility type of Ehlers-Danlos syndrome. Am J Hum Genet 2003; 73: 214-217.
  • 33 Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med 2000; 342: 673-680.
  • 34 Krane SM, Pinnell SR, Erbe RW. Lysyl-protocollagen hydroxylase deficiency in fibroblasts from siblings with hydroxylysine-deficient collagen. Proc Natl Acad Sci U S A 1972; 69: 2899-2903.
  • 35 Al-Hussain H, Zeisberger SM, Huber PR. et al. Brittle cornea syndrome and its delineation from the kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VI): report on 23 patients and review of the literature. Am J Med Genet A 2004; 124A: 28-34.
  • 36 Byers P, Cole W. Osteogenesis imperfecta. In: Royce PM, Steinmann B. eds. Connective tissue and its heritable disorders: molecular, genetic, and medical aspects. 2nd ed.. New York: Wiley-Liss; 2002: 385-430.
  • 37 Byers PH, Duvic M, Atkinson M. et al. Ehlers-Danlos syndrome type VIIA and VIIB result from splicejunction mutations or genomic deletions that involve exon 6 in the COL1A1 and COL1A2 genes of type I collagen. Am J Med Genet 1997; 72: 94-105.
  • 38 Cabral WA, Makareeva E, Colige A. et al. Mutations near amino end of alpha1(I) collagen cause combined osteogenesis imperfecta/Ehlers-Danlos syndrome by interference with N-propeptide processing. J Biol Chem 2005; 280: 19259-19269.
  • 39 Colige A, Sieron AL, Li SW. et al. Human Ehlers- Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am J Hum Genet 1999; 65: 308-317.
  • 40 Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 1979; 16: 101-116.
  • 41 Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet 2004; 363: 1377-1385.
  • 42 Morello R, Bertin TK, Chen Y. et al. CRTAP is required for prolyl 3– hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 2006; 127: 291-304.
  • 43 Barnes AM, Chang W, Morello R. et al. Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. N Engl J Med 2006; 355: 2757-2764.
  • 44 Cabral WA, Chang W, Barnes AM. et al. Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet 2007; 39: 359-365.
  • 45 Cohn DH, Briggs MD, King LM. et al. Mutations in the cartilage oligomeric matrix protein (COMP) gene in pseudoachondroplasia and multiple epiphyseal dysplasia. Ann N Y Acad Sci 1996; 785: 188-194.
  • 46 Larsen LJ, Schottstaedt ER, Bost FC. Multiple congenital dislocations associated with characteristic facial abnormality. J Pediatr 1950; 37: 574-581.
  • 47 Krakow D, Robertson SP, King LM. et al. Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat Genet 2004; 36: 405-410.
  • 48 Hermanns P, Unger S, Rossi A. et al. Congenital joint dislocations caused by carbohydrate sulfotransferase 3 deficiency in recessive Larsen syndrome and humero-spinal dysostosis. Am J Hum Genet 2008; 82: 1368-1374.
  • 49 Desbuquois G, Grenier B, Michel J, Rossignol C. Nanisme chondrodystrophique avec ossification anarchique et polymalformations chez deux soeurs. Arch Fr Pediatr 1966; 23: 573-587.
  • 50 Le Merrer M, Young ID, Stanescu V, Maroteaux P. Desbuquois syndrome. Eur J Pediatr 1991; 150: 793-796.
  • 51 Faivre L, Le Merrer M, Al-Gazali LI. et al. Homozygosity mapping of a Desbuquois dysplasia locus to chromosome 17q25.3. J Med Genet 2003; 40: 282-284.
  • 52 Beighton P, Kozlowski K. Spondylo-epi-metaphyseal dysplasia with joint laxity and severe, progressive kyphoscoliosis. Skeletal Radiol 1980; 05: 205-212.
  • 53 Rybczynski M, Bernhardt AM, Rehder U. et al. The spectrum of syndromes and manifestations in individuals screened for suspected Marfan syndrome. Am J Med Genet A 2008; 146A: 3157-3166.