Osteologie 2009; 18(04): 269-274
DOI: 10.1055/s-0037-1619906
Seltene Knochenerkrankungen
Schattauer GmbH

Osteoporose - Symptom seltener genetischer Erkrankungen

Osteoporosis as a symptom for rare hereditary disorders
U. Kornak
1   Institut für Medizinische Genetik, Charité Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

eingereicht: 08 October 2009

angenommen: 19 October 2009

Publication Date:
30 December 2017 (online)

Zusammenfassung

Das Skelett zeigt bei einer Vielzahl von Erkrankungen, bei denen primär Symptome in anderen Organen auffallen, begleitende Veränderungen, die häufig in einer Verringerung der Knochenmineraldichte bestehen. Solange keine Anzeichen für eine unmittelbar erhöhte Frakturgefahr bestehen, werden solcheVeränderungen verständlicherweise häufig am Rande zur Kenntnis genommen, da andere Probleme klinisch im Vordergrund stehen. Es sollte hierbei jedoch beachtet werden, dass eine im konventionellen Röntgenbild erkennbare Osteopenie für den noch jungen Betroffenen langfristig Konsequenzen haben kann, da sie im höheren Alter zu einem verfrühten Eintreten einer biomechanisch bedeutsamen Verringerung der Knochenmasse prädisponieren kann. Diese kurze Übersichtsarbeit will anhand einer Auswahl von hereditären und daher naturgemäß sehr seltenen Erkrankungen, bei denen zumindest eine deutliche Osteopenie, meist aber auch eine erhöhte Frakturneigung dokumentiert ist, zeigen, welche Punkte differenzialdiagnostisch beachtet werden müssen und in welcher Beziehung die verschiedenen Pathomechanismen zueinander stehen.

Summary

A number of disorders that primarily affect other organ systems also entail skeletal changes, often resulting in a reduced bone mass. As in most cases this radiologically detectable osteopenia does not lead to an increased fracture risk immediately it is often regarded as a minor aspect of the disease. However, it should be considered that a reduced peak bone mass predisposes for an increased fracture risk later in life. This overview presents some rare hereditary disorders that include reduced bone mineral density and - in some cases - also an increased fracture risk. Aspects important for the differential diagnosis and the relations between the different pathomechanisms are discussed.

 
  • Literatur

  • 1 Elefteriou F, Ahn JD, Takeda S. et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005; 434 (7032) 514-520.
  • 2 Ducy P, Amling M, Takeda S. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000; 100 (02) 197-207.
  • 3 Yadav VK, Ryu JH, Suda N. et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 2008; 135 (05) 825-837.
  • 4 Negri AL. Hereditary hypophosphatemias: new genes in the bone-kidney axis. Nephrology (Carlton) 2007; 12 (04) 317-320.
  • 5 Cooper C, Westlake S, Harvey N. et al. Review: developmental origins of osteoporotic fracture. Osteoporos Int 2006; 17 (03) 337-347.
  • 6 Mundlos S. Cleidocranial dysplasia: clinical and molecular genetics. J Med Genet 1999; 36 (03) 177-182.
  • 7 Bergwitz C, Prochnau A, Mayr B. et al. Identification of novel CBFA1/RUNX2 mutations causing cleidocranial dysplasia. J Inherit Metab Dis 2001; 24 (06) 648-656.
  • 8 Unger S, Mornet E, Mundlos S. et al. Severe cleidocranial dysplasia can mimic hypophosphatasia. Eur J Pediatr 2002; 161 (11) 623-626.
  • 9 Ha-Vinh R, Alanay Y, Bank RA. et al. Phenotypic and molecular characterization of Bruck syndrome (osteogenesis imperfecta with contractures of the large joints) caused by a recessive mutation in PLOD2. Am J Med Genet A 2004; 131 (02) 115-120.
  • 10 Morava E, Guillard M, Lefeber DJ, Wevers RA. Autosomal recessive cutis laxa syndrome revisited. Eur J Hum Genet 2009; 17: 1099-1110.
  • 11 Van Maldergem L, Yuksel-Apak M, Kayserili H. et al. Cobblestone-like brain dysgenesis and altered glycosylation in congenital cutis laxa, Debre type. Neurology 2008; 71 (20) 1602-1608.
  • 12 Hunter AG. Is geroderma osteodysplastica underdiagnosed?. J Med Genet 1988; 25 (12) 854-857.
  • 13 Argraves WS, Greene LM, Cooley MA, Gallagher WM. Fibulins: physiological and disease perspectives. EMBO Rep 2003; 04 (12) 1127-1131.
  • 14 Hucthagowder V, Sausgruber N, Kim KH. et al. Fibulin-4: a novel gene for an autosomal recessive cutis laxa syndrome. Am J Hum Genet 2006; 78 (06) 1075-1080.
  • 15 Hoyer J, Kraus C, Hammersen G. et al. Lethal cutis laxa with contractural arachnodactyly, overgrowth and soft tissue bleeding due to a novel homozygous fibulin-4 gene mutation. Clin Genet 2009; 76 (03) 276-281.
  • 16 Dasouki M, Markova D, Garola R. et al. Compound heterozygous mutations in fibulin-4 causing neonatal lethal pulmonary artery occlusion, aortic aneurysm, arachnodactyly, and mild cutis laxa. Am J Med Genet A 2007; 143A (22) 2635-2641.
  • 17 Bamatter F, Franceschetti A, Klein D, Sierro A. Gérodermie ostéodysplasique héréditaire. Ann Pediatr 1950; 174: 126-127.
  • 18 Hennies HC, Kornak U, Zhang H. et al. Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab-6 interacting golgin. Nat Genet 2008; 40 (12) 1410-1412.
  • 19 Noordam C, Funke S, Knoers NV. et al. Decreased bone density and treatment in patients with autosomal recessive cutis laxa. Acta Paediatr 2009; 08 (03) 90-99.
  • 20 Reversade B, Escande-Beillard N, Dimopoulou A. et al. Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet 2009; 41 (09) 1016-1021.
  • 21 Krishnan N, Dickman MB, Becker DF. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med 2008; 44 (04) 671-681.
  • 22 Hagedorn CH, Phang JM. Transfer of reducing equivalents into mitochondria by the interconversions of proline and delta 1-pyrroline-5-carboxylate. Arch Biochem Biophys 1983; 225 (01) 95-101.
  • 23 Callewaert B, Malfait F, Loeys B, De Paepe A. Ehlers-Danlos syndromes and Marfan syndrome. Best Pract Res Clin Rheumatol 2008; 22 (01) 165-189.
  • 24 Nicholls AC, Sher JL, Wright MJ. et al. Clinical phenotypes and molecular characterisation of three patients with Ehlers-Danlos syndrome type VII. J Med Genet 2000; 37 (11) E33.
  • 25 Steinmann B, Eyre DR, Shao P. Urinary pyridinoline cross-links in Ehlers-Danlos syndrome type VI. Am J Hum Genet 1995; 57 (06) 1505-1508.
  • 26 Giunta C, Elcioglu NH, Albrecht B. et al. Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome--an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet 2008; 82 (06) 1290-1305.
  • 27 Gong Y, Slee RB, Fukai N. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001; 107 (04) 513-523.
  • 28 Mani A, Radhakrishnan J, Wang H. et al. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 2007; 315 (5816) 1278-1282.
  • 29 Liu W, Mani S, Davis NR. et al. Mutation in EGFP domain of LDL receptor-related protein 6 impairs cellular LDL clearance. Circ Res 2008; 103 (11) 1280-1288.
  • 30 Fujino T, Asaba H, Kang MJ. et al. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucoseinduced insulin secretion. Proc Natl Acad Sci U S A 2003; 100 (01) 229-234.
  • 31 Mudd SH, Skovby F, Levy HL. et al. The natural history of homocystinuria due to cystathionine betasynthase deficiency. Am J Hum Genet 1985; 37 (01) 1-31.
  • 32 Levasseur R. Bone tissue and hyperhomocysteinemia. Joint Bone Spine 2009; 76 (03) 234-240.
  • 33 Gupta S, Kuhnisch J, Mustafa A. et al. Mouse models of cystathionine beta-synthase deficiency reveal significant threshold effects of hyperhomocysteinemia. Faseb J 2009; 23 (03) 883-893.
  • 34 Majors AK, Pyeritz RE. A deficiency of cysteine impairs fibrillin-1 deposition: implications for the pathogenesis of cystathionine beta-synthase deficiency. Mol Genet Metab 2000; 70 (04) 252-260.
  • 35 Jakubowski H. The pathophysiological hypothesis of homocysteine thiolactone-mediated vascular disease. J Physiol Pharmacol 2008; 59 (Suppl. 09) 155-167.
  • 36 Wenstrup RJ, Roca-Espiau M, Weinreb NJ, Bembi B. Skeletal aspects of Gaucher disease: a review. Br J Radiol 2002; 75 (Suppl. 01) A2-12.
  • 37 Wenstrup RJ, Kacena KA, Kaplan P. et al. Effect of enzyme replacement therapy with imiglucerase on BMD in type 1 Gaucher disease. J Bone Miner Res 2007; 22 (01) 119-126.
  • 38 Stowens DW, Teitelbaum SL, Kahn AJ, Barranger JA. Skeletal complications of Gaucher disease. Medicine (Baltimore) 1985; 64 (05) 310-322.
  • 39 Mikosch P, Reed M, Stettner H. et al. Patients with Gaucher disease living in England show a high prevalence of vitamin D insufficiency with correlation to osteodensitometry. Mol Genet Metab 2009; 96 (03) 113-120.
  • 40 Germain DP, Benistan K, Boutouyrie P, Mutschler C. Osteopenia and osteoporosis: previously unrecognized manifestations of Fabry disease. Clin Genet 2005; 68 (01) 93-95.