Osteologie 2010; 19(03): 217-224
DOI: 10.1055/s-0037-1619944
Mechanobiologie des Knochens
Schattauer GmbH

Knochenqualität jenseits von Knochenmineraldichte

Neue diagnostische Perspektiven mit quantitativem UltraschallBone quality beyond bone mineral densitynew diagnostic perspectives by quantitative ultrasound
K. Raum
1   Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité – Universitätsmedizin Berlin
,
D. Rohrbach
1   Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité – Universitätsmedizin Berlin
,
P. Laugier
2   Université Pierre et Marie Curie – Paris 6, Laboratoire d’Imagerie Paramétrique, Paris, Frankreich
,
C.-C. Glüer
3   Medizinische Physik, Klinik für Diagnostische Radiologie, Universitätsklinikum Schleswig-Holstein, Kiel
,
R. Barkmann
3   Medizinische Physik, Klinik für Diagnostische Radiologie, Universitätsklinikum Schleswig-Holstein, Kiel
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht: 22. Juli 2010

angenommen: 30. Juli 2010

Publikationsdatum:
30. Dezember 2017 (online)

Zusammenfassung

Osteoporose ist eine Skeletterkrankung, die nur teilweise durch eine Veränderung der Knochenmineraldichte gekennzeichnet ist. Knochenqualität wird durch eine Vielzahl von kompositionellen und ultrastrukturellen Parametern der mineralisierten Knochenmatrix bestimmt. Im Gegensatz zu radiografischen Methoden tragen Ultraschallwellen durch ihre elastische Wechselwirkung mit dem Knochengewebe Informationen über dessen elastische und ultrastrukturelle Eigenschaften. Quantitative Ultraschallmethoden (QUS) sind erstklassige Alternativen zur radiologischen Abschätzung des Frakturrisikos. Neue Methoden messen direkt an besonders frakturgefährdeten anatomischen Regionen, wie. z. B. dem distalen Radius und dem proximalen Femur. Experimentell erlauben Schallfrequenzen bis in den GHz-Bereich “elastische Einblicke” bis in die lamelläre Knochenstruktur. Das Potenzial der Kombination hochaufgelöster mikroelastischer Verteilungsmessungen mit numerischen Schallausbreitungssimulationen zur Optimierung neuer QUS-Methoden wird im Folgenden vorgestellt.

Summary

Osteoporosis is a skeletal disease that is only partially explained by variations in bone mineral density. Bone quality is determined by a variety of compositional and ultra-structural properties of the mineralized tissue matrix. In contrast to x-ray based methods, the interaction of acoustic waves with bone tissue generates information on the elastic and structural properties of this tissue. Quantitative ultrasound (QUS) is a first class alternative to ionizing x-ray based assessment of fracture risk. New methods measure at fragile anatomical regions, e. g. the distal radius and the proximal femur. Experimentally, ultrasound frequencies up to the GHz range allow an “elastic view” into the lamellar bone structure. The potential of high resolution microelastic images measured by scanning acoustic microscopy in combination with numerical sound propagation simulations for the optimization and validation of novel QUS methods will be discussed.

 
  • Literatur

  • 1 Consensus development conference. Diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 1993; 94: 646-650.
  • 2 Al H I, Padilla F, Nefussi R. et al. Experimental evaluation of bone quality measuring speed of sound in cadaver mandibles. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006; 102: 782-791.
  • 3 Ashman RB, Rho JY, Turner CH. Anatomical variation of orthotropic elastic moduli of the proximal human tibia. J Biomech 1989; 22: 895-900.
  • 4 Augat P, Merk J, Genant HK, Claes L. Quantitative assessment of experimental fracture repair by peripheral computed tomography. Calcif Tissue Int 1997; 60: 194-199.
  • 5 Barkmann R, Dencks S, Laugier P. et al. Femur ultrasound (FemUS)-first clinical results on hip fracture discrimination and estimation of femoral BMD. Osteoporosis International 2010; 21: 969-976.
  • 6 Barkmann R, Laugier P, Moser U. et al. In vivo measurements of ultrasound transmission through the human proximal femur. Ultrasound Med Biol 2008; 34: 1186-1190.
  • 7 Bauer DC, Gluer CC, Cauley JA. et al. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 1997; 157: 629-634.
  • 8 Blake GM, Fogelman I. The correction of BMD measurements for bone strontium content. J Clin Densitom 2007; 10: 259-265.
  • 9 Bossy E, Laugier P, Peyrin F, Padilla F. Attenuation in trabecular bone: A comparison between numerical simulation and experimental results in human femur. J Acoust Soc Am 2007; 122: 2469-2475.
  • 10 Bossy E, Talmant M, Laugier P. Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study. J Acoust Soc Am 2002; 112: 297-307.
  • 11 Bossy E, Talmant M, Laugier P. Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models. J Acoust Soc Am 2004; 115: 2314-2324.
  • 12 Chen P, Miller PD, Recker R. et al. Increases in BMD correlate with improvements in bone microarchitecture with teriparatide treatment in postmenopausal women with osteoporosis. J Bone Miner Res 2007; 22: 1173-1180.
  • 13 Dachverband Osteologie e.V. DVO-Leitlinie 2009 zur Prophylaxe, Diagnostik und Therapie der Osteoporose bei Erwachsenen. Osteologie 2009; 18: 304-328.
  • 14 Faulkner KG, von SE, Miller P. Discordance in patient classification using T-scores. J Clin Densitom 1999; 02: 343-350.
  • 15 Frost ML, Blake GM, Fogelman I. Can the WHO criteria for diagnosing osteoporosis be applied to calcaneal quantitative ultrasound?. Osteoporos Int 2000; 11: 321-330.
  • 16 Gluer CC. Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res 1997; 12: 1280-1288.
  • 17 Gluer CC, Eastell R, Reid DM. et al. Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS Study. J Bone Miner Res 2004; 19: 782-793.
  • 18 Grimal Q, Raum K, Gerisch A, Laugier P. Derivation of the mesoscopic elasticity tensor of cortical bone from quantitative impedance images at the micron scale. Comput Methods Biomech Biomed Engin 2008; 11: 147-157.
  • 19 Hans D, Dargent-Molina P, Schott AM. et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 1996; 348: 511-514.
  • 20 Hans D, Krieg MA. The clinical use of quantitative ultrasound (QUS) in the detection and management of osteoporosis. IEEE Trans Ultrason Ferroelectr Freq Control 2008; 55: 1529-1538.
  • 21 Hans D, Rizzoli R, Thiebaud D. et al. Reference data in a Swiss population. Discordance in patient classification using T-scores among calcaneum, spine, and femur. J Clin Densitom 2001; 04: 291-298.
  • 22 Hofman T, Raum K, Leguerney I. et al. Assessment of bone structure and acoustic impedance in C3H and BL6 mice using high resolution scanning acoustic microscopy. Ultrasonics 2006; 44S: e1307-e1311.
  • 23 Hofmann T, Heyroth F, Meinhard H. et al. Assessment of composition and anisotropic elastic properties of secondary osteon lamellae. J Biomech 2006; 39: 2284-2294.
  • 24 Hube R, Mayr H, Hein W, Raum K. Prediction of biomechanical stability after callus distraction by high resolution scanning acoustic microscopy. Ultrasound Med Biol 2006; 32: 1913-1921.
  • 25 Katz JL, Yoon HS. The structure and anisotropic mechanical properties of bone. IEEE Trans Biomed Eng 1984; 31: 878-884.
  • 26 Khaw KT, Reeve J, Luben R. et al. Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 2004; 363: 197-202.
  • 27 Krieg MA, Cornuz J, Ruffieux C. et al. Prediction of hip fracture risk by quantitative ultrasound in more than 7000 Swiss women > or =70 years of age: comparison of three technologically different bone ultrasound devices in the SEMOF study. J Bone Miner Res 2006; 21: 1457-1463.
  • 28 Lakshmanan S, Bodi A, Raum K. Assessment of anisotropic tissue elasticity of cortical bone from highresolution, angular acoustic measurements. IEEE Trans Ultrason Ferroelectr Freq Control 2007; 54: 1560-1570.
  • 29 Langton CM, Palmer SB, Porter RW. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 1984; 13: 89-91.
  • 30 Laugier P. Instrumentation for in vivo ultrasonic characterization of bone strength. IEEE Trans Ultrason, Ferroelect, Freq Contr 2008; 55: 1179-1196.
  • 31 Markel MD, Chao EY. Noninvasive monitoring techniques for quantitative description of callus mineral content and mechanical properties. Clin Orthop Relat Res 1993; 293: 37-45.
  • 32 Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996; 312: 1254-1259.
  • 33 Moayyeri A, Kaptoge S, Luben RN. et al. Estimation of absolute fracture risk among middle-aged and older men and women: the EPIC-Norfolk population cohort study. Eur J Epidemiol 2009; 24: 259-266.
  • 34 Muller M, Moilanen P, Bossy E. et al. Comparison of three ultrasonic axial transmission methods for bone assessment. Ultrasound Med Biol 2005; 31: 633-642.
  • 35 Preininger B, Checa S, Molnar FL. et al. Kinetics of elastic bone reconstitution in a sheep callus following osteotomy. Ultrasound in Medicine and Biology. 2010 submitted..
  • 36 Raum K. Microelastic imaging of bone. IEEE Trans Ultrason, Ferroelect, Freq Contr 2008; 55: 1417-1431.
  • 37 Raum K, Cleveland RO, Peyrin F, Laugier P. Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps. Phys Med Biol 2006; 51: 747-758.
  • 38 Raum K, Hofmann T, Leguerney I. et al. Variations of microstructure, mineral density and tissue elasticity in B6/C3H mice. Bone 2007; 41: 1017-1024.
  • 39 Raum K, Leguerney I, Chandelier F. et al. Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med Biol 2005; 31: 1225-1235.
  • 40 Raum K, Leguerney I, Chandelier F. et al. Sitematched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation μCT. Phys Med Biol 2006; 51: 733-746.
  • 41 Reichel H, Lebek S, Alter C, Hein W. Biomechanical and densitometric bone properties after callus distraction in sheep. Clin Orthop Relat Res 1998; 357: 237-246.
  • 42 Rupin F, Bossis D, Vico L. et al. Adaptive remodeling of trabecular bone core cultured in 3-D bioreactor providing cyclic loading: an acoustic microscopy study. Ultrasound Med Biol 2010; 36: 999-1007.
  • 43 Rupin F, Saied A, Dalmas D. et al. Assessment of Microelastic Properties of Bone Using Scanning Acoustic Microscopy: A Face-to-Face Comparison with Nanoindentation. Japanese Journal of Applied Physics 2009; 48: 1-6.
  • 44 Sakata S, Barkmann R, Lochmuller EM. et al. Assessing bone status beyond BMD: evaluation of bone geometry and porosity by quantitative ultrasound of human finger phalanges. J Bone Miner Res 2004; 19: 924-930.
  • 45 van Lenthe H, Voide R, Muller R. Beam theory strongly underestimates bone tissue properties in a murine model of bone genetics. J Biomech 2006; 39: S18.
  • 46 Yoon HS, Katz JL. Ultrasonic wave propagation in human cortical bone-I. Theoretical considerations for hexagonal symmetry. J Biomech 1976; 09: 407-412.