Osteologie 2010; 19(03): 240-244
DOI: 10.1055/s-0037-1619949
Mechanobiologie des Knochens
Schattauer GmbH

Signaltransduktionswege der Mechanotransduktion in Knochenzellen

Signal transduction pathways in mechanotransduction in bone cells
A. Liedert
1   Institut für Unfallchirurgische Forschung und Biomechanik, Zentrum für Muskuloskelettale Forschung, Universität Ulm
,
L. Kreja
1   Institut für Unfallchirurgische Forschung und Biomechanik, Zentrum für Muskuloskelettale Forschung, Universität Ulm
,
L. Wagner
1   Institut für Unfallchirurgische Forschung und Biomechanik, Zentrum für Muskuloskelettale Forschung, Universität Ulm
,
C. Neidlinger-Wilke
1   Institut für Unfallchirurgische Forschung und Biomechanik, Zentrum für Muskuloskelettale Forschung, Universität Ulm
,
R. Ebert
2   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
F. Jakob
2   Orthopädisches Zentrum für Muskuloskelettale Forschung, Universität Würzburg
,
A. Ignatius
1   Institut für Unfallchirurgische Forschung und Biomechanik, Zentrum für Muskuloskelettale Forschung, Universität Ulm
› Author Affiliations
Further Information

Publication History

eingereicht: 23 July 2010

angenommen: 27 July 2010

Publication Date:
30 December 2017 (online)

Zusammenfassung

Die Erhaltung der Knochenmasse wird durch die Interaktion von verschiedenen Faktoren, einschließlich systemischen Hormonen, lokalen Wachstumsfaktoren und mechanischer Belastung reguliert. Verantwortlich für die adaptive Antwort von Knochenzellen auf mechanische Belastung sind zelluläre Prozesse der Aufnahme, der Umwandlung des physikalischen Stimulus in strukturelle und biochemische Reaktionen, die als Mechanotransduktion bezeichnet werden. Osteoblasten und vor allem Osteozyten sind die mechanosensorischen Zellen des Knochens. Sie benötigen den mechanischen Stimulus für ihre Vitalität und Funktion. Die in der Mechanotransduktion aktivierten Signalwege wirken anabol auf die Knochenmasse. Hierzu gehören der WNT (wingless integration)/β-Catenin und der Östrogenrezeptor (ER)-Signalweg, die beide eine entscheidende Rolle in der Regulation von Knochenbildung und Knochenresorption spielen. Eine Aufklärung der Interaktion der Signalwege in der Mechanotransduktion durch geeignete In-vitro-und In-vivo-Experimente ist sinnvoll, um in Zukunft effektiv mechanische Signale in der Prävention und Intervention von/bei osteodegenerativen Krankheiten, wie z. B. Osteoporose, nutzen zu können.

Summary

Bone mass homeostasis is regulated by the interaction of various factors, including systemic hormones, local growth factors, and mechanical loading. Prerequisite for the adaptive response of bone cells to mechanical loading are mechanisms of perception and the transduction of mechanical signals into structural and biochemical processes in the cell, a phenomenon that is termed mechanotransduction. Osteoblasts, and in particular osteocytes, are the mechanosensitive cells in bone, and they require the mechanical stimulus for their vitality and function. The activation of signal transduction pathways in mechanotransduction results in an increase of bone mass. Two signal transduction pathways, the WNT (wingless integration)/β−catenin and the oestrogen receptor (ER) signal pathway, have been shown to play a crucial role in regulating bone formation and bone resorption. Studying signal pathways in mechanotransduction using in vitro and in vivo models is of significance for effective application of mechanical stimuli in the prevention of and the intervention in degenerative bone diseases, such as osteoporosis, in the future.

 
  • Literatur

  • 1 Armstrong VJ, Muzylak M, Sunters A. et al. Wnt/ beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha. J Biol Chem 2007; 282: 20715-20727.
  • 2 Burger EH, Klein-Nulend J, Smit TH. Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon – a proposal. J Biomech 2003; 36: 1453-1459.
  • 3 Cherian PP, Siller-Jackson AJ, Gu S. et al. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prosta-glandin. Mol Biol Cell 2005; 16: 3100-3106.
  • 4 Fan X, Roy E, Zhu L. et al. Nitric oxide regulates receptor activator of nuclear factor-kappaB ligand and osteoprotegerin expression in bone marrow stromal cells. Endocrinology 2004; 145: 751-759.
  • 5 Farhadieh RD, Gianoutsos MP, Yu Y, Walsh WR. The role of bone morphogenetic proteins BMP-2 and BMP-4 and their related postreceptor signaling system (Smads) in distraction osteogenesis of the mandible. J Craniofac Surg 2004; 15: 714-718.
  • 6 Franceschi RT, Xiao G, Jiang D. et al. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res 2003; 44 (Suppl. 01) 109-116.
  • 7 Genetos DC, Geist DJ, Liu D. et al. Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3-E1 osteoblasts. J Bone Miner Res 2005; 20: 41-49.
  • 8 Hall JM, Couse JF, Korach KS. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 2001; 276: 36869-36872.
  • 9 Hughes-Fulford M. Signal transduction and mechanical stress. Sci STKE 2004; 2004: RE12.
  • 10 Ignatius A, Blessing H, Liedert A. et al. Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 2005; 26: 311-318.
  • 11 Imai S, Heino TJ, Hienola A. et al. Osteocyte-derived HB-GAM (pleiotrophin) is associated with bone formation and mechanical loading. Bone 2009; 44: 785-794.
  • 12 Iqbal J, Zaidi M. Molecular regulation of mecha-notransduction. Biochem Biophys Res Commun 2005; 328: 751-755.
  • 13 Johnson ML. The high bone mass family – the regulation of Wnt/Lrp5 signaling in the regulation of bone mass. J Musculoskel Neuron Interact 2004; 04: 135-138.
  • 14 Kaspar D, Seidl W, Neidlinger-Wilke C. et al. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech 2000; 33: 45-51.
  • 15 Kaspar D, Seidl W, Neidlinger-Wilke C. et al. Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J Biomech 2002; 35: 873-880.
  • 16 Kreja L, Liedert A, Hasni S. et al. Mechanical regulation of osteoclastic genes in human osteoblasts. Biochem Biophys Res Commun 2008; 368: 582-587.
  • 17 Lau KH, Kapur S, Kesavan C, Baylink DJ. Upregulation of the WNT, estrogen receptor, insulin-like growth factor-I, and bone morphogenetic protein pathways in C57BL/6J osteoblasts as opposed to C3H/HeJ osteoblasts in part contributes to the differential anabolic response to fluid shear. J Biol Chem 2006; 281: 9576-9588.
  • 18 Lee K, Jessop H, Suswillo R. et al. Endocrinology: bone adaptation requires oestrogen receptor-alpha. Nature 2003; 424: 389.
  • 19 Lee MH, Kwon TG, Park HS. et al. BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun 2003; 309: 689-694.
  • 20 Li J, Liu D, Ke HZ. et al. The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem 2005; 280: 42952-42959.
  • 21 Liedert A, Augat P, Ignatius A. et al. Mechanical regulation of HB-GAM expression in bone cells. Biochem Biophys Res Commun 2004; 319: 951-958.
  • 22 Liedert A, Kaspar D, Blakytny R. et al. Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophys Res Commun 2006; 349: 1-5.
  • 23 Liedert A, Kaspar D, Claes L, Ignatius A. Signal transduction pathways involved in mechanical regulation of HB-GAM expression in osteoblastic cells. Biochem Biophys Res Commun 2006; 342: 1070-1076.
  • 24 Liedert A, Kassem M, Claes L, Ignatius A. Mecha-nosensitive promoter region in the human HBGAM gene. Biochem Biophys Res Commun 2009; 387: 289-293.
  • 25 Liedert A, Wagner L, Seefried L. et al. Estrogen receptor and Wnt signaling interact to regulate early gene expression in response to mechanical strain in osteoblastic cells. Biochem Biophys Res Commun 2010; 394: 755-759.
  • 26 Lin C, Jiang X, Dai Z. et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 2009; 24: 1651-1661.
  • 27 Mikuni-Takagaki Y. Mechanical responses and signal transduction pathways in stretched osteocytes. J Bone Miner Metab 1999; 17: 57-60.
  • 28 Neidlinger-Wilke C, Stalla I. et al. Human osteoblasts from younger normal and osteoporotic donors show differences in proliferation and TGF beta-release in response to cyclic strain. J Biomech 1995; 28: 1411-1418.
  • 29 Norvell SM, Alvarez M, Bidwell JP, Pavalko FM. Fluid shear stress induces beta-catenin signaling in osteoblasts. Calcif Tissue Int 2004; 75: 396-404.
  • 30 Ogasawara A, Arakawa T, Kaneda T. et al. Fluid shear stress-induced cyclooxygenase-2 expression is mediated by C/EBP beta, cAMP-response elementbinding protein, and AP-1 in osteoblastic MC3T3-E1 cells. J Biol Chem 2001; 276: 7048-7054.
  • 31 Pavalko FM, Norvell SM, Burr DB. et al. A model for mechanotransduction in bone cells: the load-bearing mechanosomes. J Cell Biochem 2003; 88: 104-112.
  • 32 Robling AG, Turner CH. Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 2009; 19: 319-338.
  • 33 Rosen CJ. Clinical practice. Postmenopausal osteoporosis. N Engl J Med 2005; 353: 595-603.
  • 34 Rubin J, Murphy TC, Zhu L. et al. Mechanical strain differentially regulates endothelial nitric-oxide synthase and receptor activator of nuclear kappa B ligand expression via ERK1/2 MAPK. J Biol Chem 2003; 278: 34018-34025.
  • 35 Rubin J, Rubin C, Jacobs CR. Molecular pathways mediating mechanical signaling in bone. Gene 2006; 367: 1-16.
  • 36 Sawakami K, Robling AG, Ai M. et al. The Wnt coreceptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem 2006; 281: 23698-23711.
  • 37 Tarbell JM, Weinbaum S, Kamm RD. Cellular fluid mechanics and mechanotransduction. Ann Biomed Eng 2005; 33: 1719-1723.
  • 38 Temiyasathit S, Jacobs CR. Osteocyte primary cilium and its role in bone mechanotransduction. Ann N Y Acad Sci 2010; 1192: 422-428.
  • 39 Tou JC, Foley A, Yuan YV. et al. The effect of ovariectomy combined with hindlimb unloading and reloading on the long bones of mature Sprague-Dawley rats. Menopause 2008; 15: 494-502.
  • 40 van Hove RP, Nolte PA, Vatsa A. et al. Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density - is there a role for mechanosensing?. Bone 2009; 45: 321-329.
  • 41 Vatsa A, Breuls RG, Semeins CM. et al. Osteocyte morphology in fibula and calvaria - is there a role for mechanosensing?. Bone 2008; 43: 452-458.
  • 42 Watanuki M, Sakai A, Sakata T. et al. Role of inducible nitric oxide synthase in skeletal adaptation to acute increases in mechanical loading. J Bone Miner Res 2002; 17: 1015-1025.
  • 43 Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene 2004; 341: 19-39.
  • 44 Young SR, Gerard-O’Riley R, Kim JB, Pavalko FM. Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteo-blasts. J Bone Miner Res 2009; 24: 411-424.
  • 45 Zhang YL, Frangos JA, Chachisvilis M. Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells. Am J Physiol Cell Physiol 2009; 296: C1391-C1399.