Osteologie 2010; 19(04): 354-357
DOI: 10.1055/s-0037-1619956
Original- und Übersichtsarbeiten
Schattauer GmbH

Bedeutung des RANK/RANKL/OPGSignalwegs für den Knochenstoffwechsel

Role of the RANK/RANKL/OPG signaling pathway in the regulation of bone metabolism
L. C. Hofbauer
1   Bereich Endokrinologie/Diabetes/metabolische Knochenerkrankungen, Medizinische Klinik III, Universitätsklinikum der Technischen Universität Dresden
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht: 14. Dezember 2009

angenommen: 12. Januar 2010

Publikationsdatum:
30. Dezember 2017 (online)

Zusammenfassung

Die meisten Knochenstoffwechselkrankheiten sind nach heutigem Kenntnisstand Folge einer gesteigerten Knochenresorption durch Osteoklasten. In den letzten 15 Jahren wurden die entscheidenden molekularen und zellulären Regulatoren der Zellbiologie von Osteoklasten entschlüsselt. Receptor activator of NF-κB-Ligand (RANKL) und sein Rezeptor RANK sind essenziell für die Differenzierung und Aktivierung von Osteoklasten und für eine normale Knochenresorption absolut erforderlich. Die Wirkungen von RANKL werden durch den endogenen löslichen Rezeptorantagonisten Osteoprotegerin (OPG) neutralisiert. Die Balance zwischen RANKL und OPG ist im Östrogenmangel oder bei systemischer Glukokortikoidtherapie gestört und dadurch wird der RANKL/OPG-Quotient erhöht, was zum beschleunigten Knochenverlust führt. Angesichts der fundamentalen Rolle des RANKL/RANK/OPG-Signalwegs im Knochenstoffwechsel ist mittlerweile RANKL zum therapeutischen Target geworden. Strategien der RANKL-Blockade wurden in verschiedenen Tiermodellen klinisch relevanter Knochenerkrankungen erfolgreich eingesetzt. Dazu zählen verschiedene Osteoporoseformen sowie Knochenverlust infolge systemischer Entzündung und Tumoren.

Summary

The majority of metabolic bone diseases is due to an enhanced bone resorption by osteoclasts. Over the last 15 years, the critical molecular and cellular pathways of osteoclast biology have been unravelled. Receptor activator of NF-κB ligand (RANKL) and its receptor RANK have been identified as the key mechanisms required for osteoclast differentiation and activation and to be undispensible for bone resorption. The effects of RANKL are counteracted by the endogenous decoy receptor osteoprotegerin (OPG). The critical balance between RANKL and OPG is disturbed in situations of estrogen deficiency or systemic glucocorticoid therapy, where the RANKL/OPG ratio is enhanced and associated with exaggerated bone loss. In light of the fundamental role of the RANKL/RANK/OPG pathway in bone remodelling, RANKL has become a therapeutic target. Strategies of RANKL blockade have been sucessfully employed in several animal models of bone loss conditions, including osteoporosis, bone loss associated with systemic inflammation, and cancer-related bone loss.

 
  • Literatur

  • 1 Lacey DL, Timms E, Tan H-L. et al. Osteoprotegerin (OPG) ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93: 165-176.
  • 2 Simonet WS, Lacey DL, Dunstan CR. et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309-319.
  • 3 Li J, Sarosi I, Yan X-Q. et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci (USA) 2000; 97: 1566-1571.
  • 4 Suda T, Takahashi N, Udagawa N. et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999; 20: 345-357.
  • 5 Nakamichi Y, Udagawa N, Kobayashi Y. et al. Osteoprotegerin reduces the serum level of receptor activator of NF-κB ligand derived from osteoblasts. J Immunol 2007; 178: 192-200.
  • 6 Teitelbaum SL. Osteoclasts; culprits in inflammatory osteolysis. Arthritis Res Ther 2006; 08: 201.
  • 7 Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 2004; 292: 490-495.
  • 8 Vega D, Maalouf NM, Sakhaee K. The Role of RANK/RANKL/OPG: Clinical Implications. J Clin Endocrinol Metab 2007; 92: 4514-4521.
  • 9 Hofbauer LC, Gori F, Riggs BL. et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 1999; 140: 4382-4389.
  • 10 Eghbali-Fatourechi G, Khosla S. et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 2003; 111: 1221-1230.
  • 11 Yano K, Tsuda E, Washida N. et al. Immunological characterization of circulating osteoprotegerin/osteoclastogenesis inhibitory factor: Increased serum concentrations in postmenopausal women with osteoporosis. J Bone Miner Res 1999; 14: 518-527.
  • 12 Makhluf HA, Mueller SM, Mizuno S, Glowacki J. Age-related decline in osteoprotegerin expression by human bone marrow cells cultured in three-dimensional collagen sponges. Biochem Biophys Res Commun 2000; 268: 669-672.
  • 13 Proell V, Xu H, Schüler C. et al. Orchiectomy upregulates free soluble RANKL in bone marrow of aged rats. Bone 2009; 45: 677-681.
  • 14 von Tirpitz C, Epp S, Klaus J. et al. Effect of systemic glucocorticoid therapy on bone metabolism and the osteoprotegerin system in patients with active Crohn’s disease. Eur J Gastroenterol Hepatol 2003; 15: 1165-1170.
  • 15 Sasaki N, Kusano E, Ando Y. et al. Changes in osteoprotegerin and markers of bone metabolism during glucocorticoid treatment in patients with chronic glomerulonephritis. Bone 2002; 30: 853-858.
  • 16 Takayanagi H, Iizuka H, Hideharu J. et al. Involvement of receptor activator of nuclear factor κB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 2000; 43: 259-269.
  • 17 Bucay N, Sarosi I, Dunstan CR. et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998; 12: 1260-1268.
  • 18 Yuan YY, Lau AG, Kostenuik PJ. et al. Soluble RANKL has detrimental effects on cortical and trabecular bone volume, mineralization and bone strength in mice. J Bone Miner Res 2005; 20: 161-162.
  • 19 Burgess T, Qian YX, Kaufman S. et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol 1999; 145: 527-538.
  • 20 Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 2008; 29: 155-192.
  • 21 Kong YY, Feige U, Sarosi I. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999; 402: 304-309.
  • 22 Canon JR, Roudier M, Bryant R. et al. Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis 2008; 25: 119-129.
  • 23 Morony S, Capparelli C, Sarosi I. et al. Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res 2001; 61: 4432-4436.
  • 24 Bekker PJ, Holloway D, Nakanishi A. et al. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res 2001; 16: 348-360.