Osteologie 2011; 20(01): 11-16
DOI: 10.1055/s-0037-1619972
Frakturheilung
Schattauer GmbH

Der physiologische Ablauf der Frakturheilung

Eine histologische BetrachtungThe physiology of fracture healinga histological outline
A. Ellinghaus
1   Julius Wolff Institut und Center für muskuloskelettale Chirurgie, Charité – Universitätsmedizin Berlin
,
K. Schmidt-Bleek
1   Julius Wolff Institut und Center für muskuloskelettale Chirurgie, Charité – Universitätsmedizin Berlin
,
G. N. Duda
1   Julius Wolff Institut und Center für muskuloskelettale Chirurgie, Charité – Universitätsmedizin Berlin
,
H. Schell
1   Julius Wolff Institut und Center für muskuloskelettale Chirurgie, Charité – Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

eingereicht: 15 February 2011

angenommen: 16 February 2011

Publication Date:
30 December 2017 (online)

Zusammenfassung

Die Knochenheilung wird durch einen komplexen, kaskadenartig ablaufenden Regenerationsmechanismus ermöglicht, der nicht mit der Bildung einer Narbe, sondern mit der vollständigen Wiederherstellung der ursprünglichen Struktur und Funktion des Knochens endet. Die Untersuchung dieses komplexen Prozesses ist nur im Tiermodell umfassend möglich, weshalb es diverse Modelle in Großund Kleintier zur Frakturheilung gibt. Eine histologische Analyse des Frakturgebiets kann den Ablauf der Knochenheilung sehr exakt und standardisiert beschreiben. Hier sollen der physiologische Ablauf der Frakturheilung in zwei gebräuchlichen Modellen (Schaf und Ratte) histologisch beschrieben und die Stärken einer histologischen Analyse herausgehoben werden.

Summary

Bone healing is enabled by a complex process, which results in scarless healing. When bone healing is successful, the original structure and function of the bone is completely restored. A thorough analysis of this complex process is practicable only in animal studies, therefore, there are many diverse models on bone healing in small and large animals.A histological analysis of the healing area delivers, if performed correctly, very exact and standardized results. This review/manuscript aims to display the physiological sequences of fracture healing in two common animal models (sheep, rat) from a histological view. The strength of histological analysis will be accentuated.

 
  • Literatur

  • 1 Aerssens J, Boonen S, Lowetand G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 1998; 139 (02) 663-670.
  • 2 Bone LB, Kassman S, Stegemann P, France J. Prospective study of union rate of open tibial fractures treated with locked, unreamed intramedullary nails. J Orthop Trauma 1994; 08 (01) 45-49.
  • 3 Eitel F, Seiler H, Schweiberer L. Morphologic examination of animal-experiment results: comparison with regeneration of the human bone-structure. II. Research results. Unfallheilkunde 1981; 84 (06) 255-264.
  • 4 Epari DR, Kassi JP, Schell H, Duda GN. Timely fracture-healing requires optimization of axial fixation stability. J Bone Joint Surg Am 2007; 89 (07) 1575-1585.
  • 5 Epari DR, Schell H, Bail HJ, Duda GN. Instability prolongs the chondral phase during bone healing in sheep. Bone 2006; 38 (06) 864-870.
  • 6 Goodship AE, Watkins PE, Rigby HS, Kenwright J. The role of fixator frame stiffness in the control of fracture healing. An experimental study. J Biomech 1993; 26 (09) 1027-1035.
  • 7 Kaspar K, Schell H, Seebeck P. et al. Angle stable locking reduces interfragmentary movements and promotes healing after unreamed nailing. Study of a displaced osteotomy model in sheep tibiae. J Bone Joint Surg Am 2005; 87 (09) 2028-2037.
  • 8 Kaspar K, Schell H, Toben D. et al. An easily reproducible and biomechanically standardized model to investigate bone healing in rats, using external fixation. Biomed Tech 2007; 52 (06) 383-390.
  • 9 Kawamoto T, Shimizu M. A method for preparing 2 to 50-micron-thick fresh-frozen sections of large samples and undecalcified hard tissues. Histochem Cell Biol 2000; 113 (05) 331-339.
  • 10 Klein P, Opitz M, Schell H. et al. Comparison of unreamed nailing and external fixation of tibial diastases-mechanical conditions during healing and biological outcome. J Orthop Res 2004; 22 (05) 1072-1078.
  • 11 Klein P, Schell H, Streitparth F. et al. The initial phase of fracture healing is specifically sensitive to mechanical conditions. J Orthop Res 2003; 21 (04) 662-669.
  • 12 Kolar P, Schmidt-Bleek K, Schell H. et al. The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B Rev 2010; 16 (04) 427-434.
  • 13 Lienau J, Schell H, Duda GN. et al. Initial vascularization and tissue differentiation are influenced by fixation stability. J Orthop Res 2005; 23 (03) 639-645.
  • 14 Lienau J, Schmidt-Bleek K, Peters A. et al. Differential regulation of blood vessel formation between standard and delayed bone healing. J Orthop Res 2009; 27 (09) 1133-1140.
  • 15 Lienau J, Schmidt-Bleek K, Peters A. et al. Insight into the molecular pathophysiology of delayed bone healing in a sheep model. Tissue Eng Part A 2010; 16 (01) 191-199.
  • 16 Pauly S, Luttosch F, Morawski M. et al. Simvastatin locally applied from a biodegradable coating of osteosynthetic implants improves fracture healing comparable to BMP-2 application. Bone 2009; 45 (03) 505-511.
  • 17 Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br 2002; 84 (08) 1093-1110.
  • 18 Peters A, Schell H, Bail HJ. et al. Standard bone healing stages occur during delayed bone healing, albeit with a different temporal onset and spatial distribution of callus tissues. Histol Histopathol 2010; 25 (09) 1149-1162.
  • 19 Peters A, Toben D, Lienau J. et al. Locally applied osteogenic predifferentiated progenitor cells are more effective than undifferentiated mesenchymal stem cells in the treatment of delayed bone healing. Tissue Eng Part A 2009; 15 (10) 2947-2954.
  • 20 Reichert JC, Saifzadeh S, Wullschleger ME. et al. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials 2009; 30 (12) 2149-2163.
  • 21 Schell H, Epari DR, Kassi JP. et al. The course of bone healing is influenced by the initial shear fixation stability. J Orthop Res 2005; 23 (05) 1022-1028.
  • 22 Schell H, Lienau J, Epari DR. et al. Osteoclastic activity begins early and increases over the course of bone healing. Bone 2006; 38 (04) 547-554.
  • 23 Schell H, Thompson MS, Bail HJ. et al. Mechanical induction of critically delayed bone healing in sheep: radiological and biomechanical results. J Biomech 2008; 41 (14) 3066-3072.
  • 24 Schmidt-Bleek K, Schell H, Kolar P. et al. Cellular composition of the initial fracture hematoma compared to a muscle hematoma: a study in sheep. J Orthop Res 2009; 27 (09) 1147-1151.
  • 25 Stürmer KM, Schuchardt W. New aspects of closed intramedullary nailing and marrow cavity reaming in animal experiments. I. The tibia of the sheep, as a model for intramedullar nailing (author’s transl). Unfallheilkunde 1980; 83 (07) 341-345.
  • 26 Taylor WR, Ehrig RM, Heller MO. et al. Tibio-femoral joint contact forces in sheep. J Biomech 2006; 39 (05) 791-798.
  • 27 Tepic S, Remiger AR, Morikawa K. et al. Strength recovery in fractured sheep tibia treated with a plate or an internal fixator: an experimental study with a two-year follow-up. J Orthop Trauma 1997; 11 (01) 14-23.