Osteologie 2011; 20(02): 119-127
DOI: 10.1055/s-0037-1619987
Morbus Paget des Skeletts
Schattauer GmbH

Pathogenese des Morbus Paget

Pathogenesis of Paget´s disease Osteologie
L. Seefried
1   Muskuloskelettales Centrum Würzburg, Universität Würzburg, Orthopädische Klinik König-Ludwig-Haus
,
R. Ebert
1   Muskuloskelettales Centrum Würzburg, Universität Würzburg, Orthopädische Klinik König-Ludwig-Haus
,
G. Baron
1   Muskuloskelettales Centrum Würzburg, Universität Würzburg, Orthopädische Klinik König-Ludwig-Haus
,
K. Blume
1   Muskuloskelettales Centrum Würzburg, Universität Würzburg, Orthopädische Klinik König-Ludwig-Haus
,
S. Bau
1   Muskuloskelettales Centrum Würzburg, Universität Würzburg, Orthopädische Klinik König-Ludwig-Haus
,
F. Jakob
1   Muskuloskelettales Centrum Würzburg, Universität Würzburg, Orthopädische Klinik König-Ludwig-Haus
› Author Affiliations
Further Information

Publication History

eingereicht: 19 May 2011

angenommen: 26 May 2011

Publication Date:
30 December 2017 (online)

Zusammenfassung

Der Morbus Paget des Knochens (Osteoitis deformans) ist gekennzeichnet durch einen fokal gesteigerten Knochenumbau mit initial vermehrter Resorption und reaktiv gesteigerter Neubildung von unzureichend strukturiertem Knochen. Die Erkrankung betrifft eine oder mehrere Stellen des gesamten Skeletts. Hinsichtlich der Pathogenese der Erkrankung kommt nach heutiger Kenntnis insbesondere genetischen Faktoren ein zentrale Rolle zu. Die bisher bei M. Paget und verwandten syndromalen Erkrankungen identifizierten Mutationen betreffen dabei unterschiedliche Gene (u. a. SQSTM-1/p62, VCP/p97, RANK, OPG),

die jedoch ganz überwiegend mit dem RANKRezeptor assoziierten NFκB-Signalweg in Verbindung gebracht werden können. Geografische Unterschiede und eine zeitliche Dynamik der Inzidenzraten deuten darüber hinaus auf einen relevanten Einfluss von Umwelfaktoren hin. Neben mechanischen und chemischen Noxen wird in diesem Kontext insbesondere die Bedeutung einer chronischen Infektion mit Paramyxoviren kontrovers diskutiert. Zusammenfassend ist nach heutigem Kenntnisstand davon auszugehen, dass bestimmte genetische Veränderungen mit Bedeutung für das Remodeling des Knochens die Suszeptibilität für die Erkrankung erhöhen, während äußere Einflussfaktoren als Trigger für die klinische Manifestation anzusehen sind.

Summary

Paget’s disease of bone (osteitis deformans) is characterized by a focal increase of bone remodeling, starting with exaggerated resorption and reactively increased formation of insufficiently structured bone. The disease affects one or more sites throughout the whole skeleton. Concerning pathogenesis of the disorder, current concepts favour a critical role of genetic factors. Mutations identified to date in Paget’s disease of bone and related disorders affect different genes (including SQSTM-1/p62, VCP/p97, RANK, OPG) which predominantly are associated with the NFκBPathway downstream the Receptor activator of NFκB (RANK). Geographical inhomogenities and temporal dynamics of incidence rates suggest a significant impact of environmental factors. Besides mechanical burden and noxious chemical substances, the relevance of chronic paramyxoviral infections is discussed controversially in this context. In summary current knowledge suggests that genetic alterations with relevance for bone remodeling increase susceptibility for the disease while environmental factors can be regarded as triggering factors for clinical manifestation.

 
  • Literatur

  • 1 Haddaway MJ, Davie MW, McCall IW, Howdle S. Effect of age and gender on the number and distribution of sites in Paget’s disease of bone. Br J Radiol 2007; 80 (955): 532-536.
  • 2 Merlotti D, Gennari L, Galli B. et al. Characteristics and familial aggregation of Paget’s disease of bone in Italy. J Bone Miner Res 2005; 20 (08) 1356-1364.
  • 3 Ralston SH, Langston AL, Reid IR. Pathogenesis and management of Paget’s disease of bone. Lancet 2008; 372 (9633): 155-163.
  • 4 Schulz A. Pathologie des Morbus Paget. Bremen, London, Boston: Uni-Med; 2006
  • 5 Paget J. On a form of chronic inflammation of bone (osteitis deformans). Medico-Chir Trans 1877; 60: 29-53.
  • 6 Rebel A, Malkani K, Basle M. et al. Ultrastructural characteristics of osteoclasts in Paget’s disease. Rev Rhum Mal Osteoartic 1974; 41 (12) 767-771.
  • 7 Barker DJ. The epidemiology of Paget’s disease of bone. Br Med Bull 1984; 40 (04) 396-400.
  • 8 Barker DJ, Clough PW, Guyer PB, Gardner MJ. Paget’s disease of bone in 14 British towns. Br Med J 1977; 01 (6070): 1181-1183.
  • 9 Cooper C, Harvey NC, Dennison EM, van Staa TP. Update on the epidemiology of Paget’s disease of bone. J Bone Miner Res 2006; 21 (Suppl. 02) P3-P8.
  • 10 Tiegs RD, Lohse CM, Wollan PC, Melton LJ. Longterm trends in the incidence of Paget’s disease of bone. Bone 2000; 27 (03) 423-427.
  • 11 Langston AL, Campbell MK, Fraser WD. et al. Clinical determinants of quality of life in Paget’s disease of bone. Calcif Tissue Int 2007; 80 (01) 1-9.
  • 12 Siris ES, Ottman R, Flaster E, Kelsey JL. Familial aggregation of Paget’s disease of bone. J Bone Miner Res 1991; 06 (05) 495-500.
  • 13 Hocking LJ, Herbert CA, Nicholls RK. et al. Genomewide search in familial Paget disease of bone shows evidence of genetic heterogeneity with candidate loci on chromosomes 2q36, 10p13, and 5q35. Am J Hum Genet 2001; 69 (05) 1055-1061.
  • 14 Goode A, Layfield R. Recent advances in understanding the molecular basis of Paget disease of bone. J Clin Pathol 2010; 63 (03) 199-203.
  • 15 Reinholt FP, Hultenby K, Oldberg A, Heinegard D. Osteopontin – a possible anchor of osteoclasts to bone. Proc Natl Acad Sci U S A 1990; 87 (12) 4473-4475.
  • 16 Suda T, Takahashi N, Udagawa N. et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999; 20 (03) 345-357.
  • 17 Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423 (6937): 337-342.
  • 18 Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med 2001; 79 (5–6): 243-253.
  • 19 Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 2004; 292 (04) 490-495.
  • 20 Li J, Sarosi I, Yan XQ. et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A 2000; 97 (04) 1566-1571.
  • 21 Habelhah H. Emerging complexity of protein ubiquitination in the NF-kappaB pathway. Genes Cancer 2010; 01 (07) 735-747.
  • 22 Feng X. Regulatory roles and molecular signaling of TNF family members in osteoclasts. Gene 2005; 350 (01) 1-13.
  • 23 Lamothe B, Webster WK, Gopinathan A. et al. TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. Biochem Biophys Res Commun 2007; 359 (04) 1044-1049.
  • 24 Mizukami J, Takaesu G, Akatsuka H. et al. Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol Cell Biol 2002; 22 (04) 992-1000.
  • 25 Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005; 07 (08) 758-765.
  • 26 Laurin N, Brown JP, Morissette J, Raymond V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet 2002; 70 (06) 1582-1588.
  • 27 Chamoux E, Couture J, Bisson M. et al. The p62 P392L mutation linked to Paget’s disease induces activation of human osteoclasts. Mol Endocrinol 2009; 23 (10) 1668-1680.
  • 28 Rea SL, Walsh JP, Ward L. et al. Sequestosome 1 mutations in Paget’s disease of bone in Australia: prevalence, genotype/phenotype correlation, and a novel non-UBA domain mutation (P364S) associated with increased NF-kappaB signaling without loss of ubiquitin binding. J Bone Miner Res 2009; 24 (07) 1216-1223.
  • 29 Najat D, Garner T, Hagen T. et al. Characterization of a non-UBA domain missense mutation of sequestosome 1 (SQSTM1) in Paget’s disease of bone. J Bone Miner Res 2009; 24 (04) 632-642.
  • 30 Sanz L, Diaz-Meco MT, Nakano H, Moscat J. The atypical PKC-interacting protein p62 channels NFkappaB activation by the IL-1-TRAF6 pathway. EMBO J 2000; 19 (07) 1576-1586.
  • 31 Wooten MW, Geetha T, Seibenhener ML. et al. The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J Biol Chem 2005; 280 (42) 35625-35629.
  • 32 Sundaram K, Shanmugarajan S, Rao DS. Functional Role of p62 (SQSTM1) interaction with deubiquitinationg enzyme CYLD in Paget’s disease of bone. J Bone Miner Res. 2009 24. (Suppl 1).
  • 33 Roodman GD. Insights into the pathogenesis of Paget’s disease. Ann N Y Acad Sci 2010; 1192: 176-180.
  • 34 Hughes AE, Ralston SH, Marken J. et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 2000; 24 (01) 45-48.
  • 35 Crockett JC, Helfrich M, Greenhorn J. et al. Diseaseassociated mutations in the signal peptide of RANK alter RANK localisation and downstream activation of NF.B. Calcif Tissue Int 2007; 81: 148.
  • 36 Johnson-Pais TL, Singer FR, Bone HG. et al. Identification of a novel tandem duplication in exon 1 of the TNFRSF11A gene in two unrelated patients with familial expansile osteolysis. J Bone Miner Res 2003; 18 (02) 376-380.
  • 37 Whyte MP, Obrecht SE, Finnegan PM. et al. Osteoprotegerin deficiency and juvenile Paget’s disease. N Engl J Med 2002; 347 (03) 175-184.
  • 38 Daroszewska A, Hocking LJ, McGuigan FE. et al. Susceptibility to Paget’s disease of bone is influenced by a common polymorphic variant of osteoprotegerin. J Bone Miner Res 2004; 19 (09) 1506-1511.
  • 39 Cundy T, Hegde M, Naot D. et al. A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum Mol Genet 2002; 11 (18) 2119-2127.
  • 40 Tresse E, Salomons FA, Vesa J. et al. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 2010; 06 (02) 217-227.
  • 41 Watts GD, Wymer J, Kovach MJ. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 2004; 36 (04) 377-381.
  • 42 Wang Q, Song C, Li CC. Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J Struct Biol 2004; 146 (1–2): 44-57.
  • 43 Albagha OM, Visconti MR, Alonso N. et al. Genomewide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone. Nat Genet 2010; 42 (06) 520-524.
  • 44 Demulder A, Takahashi S, Singer FR. et al. Abnormalities in osteoclast precursors and marrow accessory cells in Paget’s disease. Endocrinology 1993; 133 (05) 1978-1982.
  • 45 Menaa C, Reddy SV, Kurihara N. et al. Enhanced RANK ligand expression and responsivity of bone marrow cells in Paget’s disease of bone. J Clin Invest 2000; 105 (12) 1833-1838.
  • 46 Naot D, Bava U, Matthews B. et al. Differential gene expression in cultured osteoblasts and bone marrow stromal cells from patients with Paget’s disease of bone. J Bone Miner Res 2007; 22 (02) 298-309.
  • 47 Marshall MJ, Evans SF, Sharp CA. et al. Increased circulating Dickkopf-1 in Paget’s disease of bone. Clin Biochem 2009; 42 (10–11): 965-969.
  • 48 Hiruma Y, Kurihara N, Subler MA. et al. A SQSTM1/p62 mutation linked to Paget’s disease increases the osteoclastogenic potential of the bone microenvironment. Hum Mol Genet 2008; 17 (23) 3708-3719.
  • 49 Mills BG, Yabe H, Singer FR. Osteoclasts in human osteopetrosis contain viral-nucleocapsid-like nuclear inclusions. J Bone Miner Res 1988; 03 (01) 101-106.
  • 50 Beneton MN, Harris S, Kanis JA. Paramyxoviruslike inclusions in two cases of pycnodysostosis. Bone 1987; 08 (04) 211-217.
  • 51 Matthews BG, Afzal MA, Minor PD. et al. Failure to detect measles virus ribonucleic acid in bone cells from patients with Paget’s disease. J Clin Endocrinol Metab 2008; 93 (04) 1398-1401.
  • 52 Helfrich MH, Hobson RP, Grabowski PS. et al. A negative search for a paramyxoviral etiology of Paget’s disease of bone: molecular, immunological, and ultrastructural studies in UK patients. J Bone Miner Res 2000; 15 (12) 2315-2329.
  • 53 Mee AP, Dixon JA, Hoyland JA. et al. Detection of canine distemper virus in 100% of Paget’s disease samples by in situ-reverse transcriptase-polymerase chain reaction. Bone 1998; 23 (02) 171-175.
  • 54 Mee AP, May C, Bennett D, Sharpe PT. Generation of multinucleated osteoclast-like cells from canine bone marrow: effects of canine distemper virus. Bone 1995; 17 (01) 47-55.
  • 55 Reddy SV, Kurihara N, Menaa C. et al. Osteoclasts formed by measles virus-infected osteoclast precursors from hCD46 transgenic mice express characteristics of pagetic osteoclasts. Endocrinology 2001; 142 (07) 2898-2905.
  • 56 Fotino M, Haymovits A, Falk CT. Evidence for linkage between HLA and Paget’s disease. Transplant Proc 1977; 09 (04) 1867-1868.
  • 57 Cody JD, Singer FR, Roodman GD. et al. Genetic linkage of Paget disease of the bone to chromosome 18q. Am J Hum Genet 1997; 61 (05) 1117-1122.
  • 58 Laurin N, Brown JP, Lemainque A. et al. Paget disease of bone: mapping of two loci at 5q35-qter and 5q31. Am J Hum Genet 2001; 69 (03) 528-543.
  • 59 Good DA, Busfield F, Fletcher BH. et al. Linkage of Paget disease of bone to a novel region on human chromosome 18q23. Am J Hum Genet 2002; 70 (02) 517-525.