Phlebologie 2005; 34(02): 81-86
DOI: 10.1055/s-0037-1621406
Originalarbeit
Schattauer GmbH

Pathogenese des chronisch-venösen Ulcus cruris

Pathogenesis of the chronic ulcus cruris venosumPathogenèse d’ulcère du pied
K. Welt
1   Universitätsklinik für Dermatologie und Allergologie Ulm (Ärztliche Direktorin: Prof. Dr. med. Karin Scharffetter-Kochanek)
,
N. Gall
1   Universitätsklinik für Dermatologie und Allergologie Ulm (Ärztliche Direktorin: Prof. Dr. med. Karin Scharffetter-Kochanek)
,
A. Sindrilaru
1   Universitätsklinik für Dermatologie und Allergologie Ulm (Ärztliche Direktorin: Prof. Dr. med. Karin Scharffetter-Kochanek)
,
K. Scharffetter-Kochanek
1   Universitätsklinik für Dermatologie und Allergologie Ulm (Ärztliche Direktorin: Prof. Dr. med. Karin Scharffetter-Kochanek)
› Author Affiliations
Further Information

Publication History

Publication Date:
29 December 2017 (online)

Zusammenfassung

Die physiologische Wundheilung umfasst mehrere Phasen: Entzündungphase mit initialer Blutstillung, Bildung eines Granulationsgewebes, Matrixsynthese und Remodellierung des Ersatzgewebes. In den westlichen Industrienationen ist insbesondere die chronisch-venöse Insuffizienz für Wundheilungsstörungen im Bereich der unteren Extremität verantwortlich. Chronisch-venöse Ulzerationen durchlaufen nicht den physiologischen Wundheilungsablauf, sondern persistieren mit geringer Heilungstendenz in der inflammatorischen Phase.

Das molekulare Verständnis der verzögerten Wundheilung im Rahmen der chronisch-venösen Insuffizienz ist entscheidend für die Entwicklung neuer Therapiestrategien. Aktuell stellen plastisch-rekonstruktive Maßnahmen, die Kompressionstherapie und bei therapierefraktärem Ulcus cruris venosum auch die chirurgische Abtragung des liposklerotischen, periulzerösen Gewebes gängige therapeutische Alternativen dar, um das chronisch aggressive Mikromilieu in ein für die Heilung förderliches umzustellen.

Summary

Physiologic wound healing comprises different phases: inflammation, formation of granulation tissue, extracellular matrix synthesis, and remodelling of the restoration tissue. Chronic venous insufficiency is the main cause for impaired wound healing of lower leg. In industrialised countries chronic venous leg ulcers fail to progress through the normal pattern of wound repair but remain in a chronic inflammatory state with little tendency of healing.

The molecular understanding of the delayed wound healing process in chronic venous insufficiency is crucial for the development of novel therapeutic options. Currently, reconstructive surgery compression therapy aimed at the reduction of the increased hydrostatic pressure in the lower leg and in therapeutically resistant cases shave therapy with elimination of the liposclerotic tissue around the ulcer are recommended to change the prooxidative microenenvironment to a more favourable one enhancing tissue repair.

Résumé

La cicatrisation physiologique d´une plaie se déroule en plusieurs phases, la phase exsudative avec l´hémostase, la phase proliférative avec le développement d´un tissu cicatriciel. Dans les pays industriels occidentaux c´est surtout l´insuffisance veineuse chronique, qui est responsable pour des problèmes de cicatrisation au niveau des membres inférieurs. Les ulcérations chroniques veineuses ne s´évoluent pas selon le déroulement physiologique de la cicatrisation, mais persistent avec peu de tendance de guérison dans la phase inflammatoire.

La compréhension des processus au niveau moléculaire de la cicatrisation retardée est décisive pour le développement de nouvelles stratégies thérapeutiques. En ce moment c´est la chirurgie plastique et reconstructive et la thérapie de compression et pour l´ulcère chronique veineux qui est réfractaire à la thérapie c´est l´ablation chirurgicale du tissu sclérotique peri ulcéreux, qui sont les alternatives thérapeutiques courantes pour changer le micromilieu chronique aggressif dans un qui est salutaire à la guérison.

 
  • Literatur

  • 1 Ackermann Z, Seidenbaum M, Rubinow A. Overload of iron in the skin of patients with varicose ulcers. Arch Dermatol 1988; 124: 1376-8.
  • 2 Anderson DC, Kishimoto TK, Smith CW. In: Scriver CR, Beaudet AI, Sly WS. et al. (eds). Leukocyte adhesion deficiency and other disorders of leukocyte adherence and motility. New York: McGraw-Hill; 1995: 3955-94.
  • 3 Badiavas EV, Falanga V. Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol 2003; 139: 510-6.
  • 4 Brenneisen P, Briviba K, Wlaschek M. et al. Hydrogen peroxide increases the steady state mRNA levels of collagenase/MMP-1 in human dermal fibroblasts. Free Radic Biol Med 1997; 22: 515-24.
  • 5 Brinckmann J, Neess CM, Gaber Y. et al. Different pattern of collagen cross-links in two sclerotic skin diseases: lipodermatosclerosis and circumscribed sclerodermia. J Invest Dermatol 2001; 117: 269-73.
  • 6 Bullen EC, Longaker MT, Updike DL. et al. Tissue inhibitor of metalloproteinases-1 is decreased and activated gelatinases are increased in chronic wounds. J Invest Dermatol 1995; 104: 236-40.
  • 7 Cheatle T. Venous ulceration and free radicals. Br J Dermatol 1991; 124: 508.
  • 8 Chen Q, Fischer A, Reagan JD. et al. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 1995; 92: 4337-41.
  • 9 Cooper DM, Yu EZ, Hennessey P. et al. Determination of endogenous cytokines in chronic wounds. Ann Surg 1994; 219: 688-92.
  • 10 Devalaraja RM, Nanney LB, Quian Q. et al. Delayed wound healing in CXCR 2 knockout mice. J Invest Dermatol 2000; 115: 234-44.
  • 11 Deutsche Gesellschaft für Phlebologie.. Leitlinie zur Diagnostik und Therapie des Ulcus cruris venosum. Phlebologie 2004; 30: 166-85.
  • 12 Falanga JV, Martin TA, Takagi H. et al. Low oxygen tension increases mRNA levels of alpha(I) procollagen in human dermal fibroblasts. J Cell Physiol 1993; 157: 408-12.
  • 13 Falanga V, Eaglstein WH. The “trap” hypothesis of venous ulceration. Lancet 1993; 341: 1006-8.
  • 14 Galli KH, Wolf H, Paul E. Therapie des Ulcus cruris venosum unter Berücksichtigung neuerer pathogenetischer Gesichtspunkte. Phlebologie 1992; 21: 183-7.
  • 15 Gilitzer R, Göbeler M. Chemokines in cutaneous wound healing. J Leukoc Biol 2001; 69: 513-21.
  • 16 Grinnell F, Ho CH, Wysocki A. Degradation of fibronectin and vitronectin in chronic wound fluid: Analysis by cell blotting, immunoblotting and cell adhesion assays. J Invest Dermatol 1992; 98: 410-6.
  • 17 Grinnell F, Zhu M. Fibronectin degradation in chronic wounds depends on the relative levels of elastase, a1-proteinase inhibitor and a2-macroglobulin. J Invest Dermatol 1996; 106: 335-41.
  • 18 Hahn J, Jünger M, Friedrich B. et al. Cutaneous inflammation limited to the region of the ulcer in chronic venous insufficiency. VASA 1997; 26: 277-81.
  • 19 Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 2nd ed. Oxford: Clarendon; 1989
  • 20 Jünger M, Steins A, Hahn M. et al. Microcirculatory dysfunction in chronic venous insuffiency. Microcirculation 2000; 7: S3-12.
  • 21 Klein P, Brenneisen P, Poswig A. et al. Fibroblastsneutrophil coculture mimics mechanism of different tissue degradation pathways in chronic wounds. J Invest Dermatol 1998; 110: 93.
  • 22 Lauer G, Sollberg S, Cole M. et al. Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds. J Invest Dermatol 2000; 115: 12-8.
  • 23 Matrisian LM. Quick guide matrix metalloproteinasen. Curr Biol 2000; 10: R692.
  • 24 Mendez MV, Stanley A, Park HY. et al. Fibroblasts culteres from venous ulcers display cellular characteristics of senescence. J Vasc Surg 1998; 28: 876-83.
  • 25 Metz CN. Fibrocytes: a unique cell population implicated in wound healing. Cell Mol Life Sci 2003; 60: 1342-50.
  • 26 Partsch H. Zur Pathogenese des venösen Ulcus cruris. Hautarzt 1985; 36: 196-202.
  • 27 Peschen M, Lahaye T, Henning B. et al. Expression of adhesion molecules ICAM-1, VCAM-1, LFA-1 and VLA-4 in the skin is modulated in progressing stages of chronic venous insuffiency. Acta Derm Venereol 1999; 79: 27-32.
  • 28 Rabe E, Pannier-Fischer F. Die Bedeutung konservativer und operativer phlebologischer Maßnahmen beim Ulcus cruris. Z Hautkr 1999; 74: 651-5.
  • 29 Rao CN, Ladin DA, Liu YY. et al. a1-Antitrypsin is degraded and non-functional in chronic wounds but intact and functional in acute wounds: The inhibitor protects fibronectin from degradation by chronic wound fluid enzymes. J Invest Dermatol 1995; 105: 572-8.
  • 30 Rosner K, Ross C, Karlsmark T. et al. Immunohistochemical characterization of the cutaneous cellular infiltrate in different areas of chronic leg ulcers. APMIS 1995; 103: 293-9.
  • 31 Scharffetter-Kochanek K, Lu H, Norman K. et al. Spontaneous skin ulceration and defective T cell function in CD18 null mice. J Exp Med. 1998 119–31.
  • 32 Scharffetter-Kochanek K, Meewes C, Hinrichs R. et al. Das chronisch-venöse Ulcus cruris. Pathogenese und Bedeutung des aggressiven “Mikromilieus”. JDDG 2003; 1: 58-67.
  • 33 Scharffetter-Kochanek K, Wlaschek M, Briviba K. et al. Singlet oxygen induces collagenase expression in human skin fibroblasts. FEBS Lett 1993; 331: 304-6.
  • 34 Schmeller W, Gaber Y. Surgical removal of ulcer and dermatoliposclerosis followed by split-skingrafting (shave therapy) yields good long-term results in “non-healing” venous leg ulcers. Acta Derm Venereol 2000; 80: 267-71.
  • 35 Scurr JH, Coleridge-Smith PD. The microcirculation in venous disease. Angiology 1994; 45: 537-41.
  • 36 Senet P, Bon FX, Benbunan M. et al. Randomized trial and local biological effect of autologous platelets used as adjuvant therapy for chronic venous leg ulcers. J Vasc Surg 2003; 38: 1342-8.
  • 37 Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341: 738-46.
  • 38 Subramaniam M, Saffaripour S, van de Water L. et al. Role of endothelial selectins in wound repair. Am J Pathol 1997; 150: 1701-9.
  • 39 Takahashi Y, Takahashi S, Shiga Y. et al. Hypoxia induction of prolyl-4-hydroxylat alpha(I) in cultured fibroblasts. J Biol Chem 2000; 275: 14139-46.
  • 40 Travis J, Salvesen GS. Human plasma proteinase inhibitors. Annu Rev Biochem 1983; 52: 655-709.
  • 41 Vande Berg JS, Rudolph R, Hollan C. et al. Fibroblast senescence in pressure ulcers. Wound Repair Regen 1998; 6: 38-49.
  • 42 Von Zglinicki T, Saretzki G, Döcke W. et al. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: A model for senescence?. Exp Cell Res 1995; 220: 186-93.
  • 43 Weckroth M, Vaheri A, Lauharanta J. et al. Matrix metalloproteinases, gelatinase and collagenase in chronic leg ulcers. J Invest Dermatol 1996; 106: 1119-24.
  • 44 Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989; 320: 365-76.
  • 45 Wenk J, Foitzik A, Achterberg V. et al. Selektive pick up of increased iron by desferoxamine coupled cellulose abrogates the iron-driven induction of matrix-degrading metalloproteinase 1 (MMP-1) and lipid peroxidation in human dermal fibroblasts in vitro-A new dressing concept. J Invest Dermatol 2001; 116: 833-9.
  • 46 Wenner A, Leu HJ, Spycher M. et al. Ultrastructural changes of capillaries in chronic venous insuffiency. Exp Cell Biol 1980; 48: 1-14.
  • 47 West MD, Pereira-Smitj O, Smith JR. Replicative senscence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp Cell Res 1989; 184: 138-47.
  • 48 West MD. Collagenases and Aging. In: Hoeffler W. (ed). Collagenases. Austin: Landes; 1999: 241-54.
  • 49 Weyl A, Vanscheidt W, Weiss JM. et al. Expression of the adhesion molecules ICAM-1, VCAM-1, and E-selectin and their ligands VLA-4 and LFA-1 in chronic venous leg ulcers. J Am Acad Dermatol 1996; 34: 418-23.
  • 50 Whiston RJ, Hallett MB, Davies EV. et al. Inappropriate neutrophil activation in venous disease. Br J Surg 1994; 81: 695-8.
  • 51 Wlaschek M, Peus D, Achterberg V. et al. Protease inhibitors protect growth factor activity in chronic wounds. Br J Dermatol 1997; 137: 646-63.
  • 52 Wysocki AB, Staiano-Coico L, Grinnel F. Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. J Invest Dermatol 1993; 101: 64-8.
  • 53 Yager DR, Chen SM, Ward SI. et al. Ability of chronic wound fluids to degrade peptide growth factors is associated with increased levels of proteinase inhibitors. Wound Rep Reg 1997; 5: 23-32.