Osteologie 2012; 21(02): 63-69
DOI: 10.1055/s-0037-1621668
Osteonekrose des Kiefers
Schattauer GmbH

Die Wirkung der antiresorptiven Therapie am Knochen

Antiresorptive therapies and their effects on bone
O. Bock
1   Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Zentrum für Muskel- und Knochenforschung, Berlin
› Author Affiliations
Further Information

Publication History

eingereicht: 27 April 2012

angenommen nach Revision: 15 May 2012

Publication Date:
04 January 2018 (online)

Zusammenfassung

Die meisten aktuellen Ansätze zur medikamentösen Behandlung des systemischen Knochenverlustes bei Osteoporose–wie Östrogene und SERM, aber vor allem Bisphosphonate und Denosumab – zielen auf eine Inhibition der Osteoklasten, der den Knochen abbauenden Zellen, ab. Stickstoffhaltige Bisphosphonate wirken durch ihre starke Bindung an der Knochenoberfläche und eine Hemmung der Osteoklastenfunktion vorwiegend über die Inhibierung der Farnesyl-Pyrophosphat-Synthase. Denosumab als vollhumaner monoklonaler Antikörper bewirkt hingegen eine gezielte Hemmung von RANK-Ligand und damit der Osteoklastendifferenzierung und -aktivierung sowie letztlich eine Reduktion der Osteoklastenzahl an der Knochenoberfläche. Bisphosphonate wie Alendronat, Risedronat, Ibandronat und Zoledronat sowie eben auch Denosumab zeigten in klinischen Studien robuste Ergebnisse bezüglich einer signifikanten Reduktion des Frakturrisikos. Ein grundlegendes Wissen um die unterschiedliche Wirkungsweise ist Voraussetzung, um einen potenziell kausalen Zusammenhang zwischen Antiresorptiva und Kieferosteonekrosen (ONJ) verstehen und daraus differenzierte und effektive Präventions- und Therapiestrategien entwickeln zu können.

Summary

In order to treat systemic bone loss in osteo - porosis, most approaches target the osteoclasts – the cells resorbing bone. Drugs inhibiting the differentiation, activity and/or survival of osteoclasts have, thus, become a fundamental option for the prevention and treatment of osteoporosis. In general, this class includes estrogens and selective estrogen receptor modulators, but, first of all, bisphosphonates and denosumab. Bisphosphonates are currently the most widely used antiresorptive therapy. They act by binding to bone and interfering with osteoclast function. The nitrogen-containing bisphosphonates act as inhibitors of farnesyl-pyro - phosphate synthase, which leads to inhibition of the prenylation of intracellular proteins. The recent discovery of the RANK/RANKL/OPG system and its essential role in the osteoclast differentiation, activity and survival, have led to the development of denosumab – an innovative treatment option. This fully human monoclonal antibody acts by binding to and inhibiting RANK-Ligand (RANKL), leading to the inhibition of osteoclast differentiation, its activity and survival and, finally, to a loss of osteoclasts from bone surfaces. Bisphosphonates, such as alendronate, risedronate, ibandronate and zoledronate, as well as the RANKLinhibitor denosumab have been approved for the treatment of osteoporosis and have shown robust efficacy data in reference to fracture prevention. The key pharmacological differences between denosumab and bisphosphonates are a result of the distribution of the drugs within bone and their effects on precursors and mature osteoclasts. This may explain differences in the degree of reduction of bone resorption, their potential differential effects on trabecular and cortical bone, and the reversibility of their actions. Basic knowledge of the differences in mode of action of these drugs is also essential to understanding of their potential association with osteonecrosis of the jaw (ONJ) and to development of differentiated and sufficient ONJ prevention and treatment strategies.

 
  • Literatur

  • 1 Dachverband Osteologie e. V. (DVO). DVO-Leitlinie 2009 zur Prophylaxe, Diagnostik und Therapie der Osteoporose bei Erwachsenen. Langfassung. Stuttgart, New York: Schattauer; 2009
  • 2 Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone 2011; 48 (04) 677-692.
  • 3 Elford PR, Felix R, Cecchini M. et al. Murine osteo-blastlike cells and the osteogenic cell MC3T3-E1 release a macrophage colony-stimulating activity in culture. Calcif Tissue Int 1987; 41 (03) 151-156.
  • 4 Yoshida H, Hayashi S, Kunisada T. et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990; 345 6274 442-444.
  • 5 Lacey DL, Timms E, Tan HL. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93 (02) 165-176.
  • 6 Kong YY, Yoshida H, Sarosi I. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397 6717 315-323.
  • 7 Theoleyre S, Wittrant Y, Tat SK. et al. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev 2004; 15 (06) 457-475.
  • 8 Wright HL, McCarthy HS, Middleton J, Marshall MJ. RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Musculoskelet Med 2009; 2 (01) 56-64.
  • 9 Pederson L, Ruan M, Westendorf JJ. et al. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA 2008; 105 (52) 20764-20769.
  • 10 Zhao C, Irie N, Takada Y. et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 2006; 4 (02) 111-121.
  • 11 Sims NA. EPHs and ephrins: many pathways to regulate osteoblasts and osteoclasts. IBMS Bone-KEy 2010; 7: 304-313.
  • 12 Russell RG. Bisphosphonates: the first 40 years. Bone 2011; 49 (01) 2-19.
  • 13 Ebetino FH, Hogan AM, Sun S. et al. The relationship between the chemistry and biological activity of the bisphosphonates. Bone 2011; 49 (01) 20-33.
  • 14 Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 2008; 19 (06) 733-759.
  • 15 Schwarz EM, Ritchlin CT. Clinical development of anti-RANKL therapy. Arthritis Res Ther 2007; 9 (Suppl. 01) S7.
  • 16 Ominsky MS, Kostenuik PJ, Cranmer P. et al. The RANKL inhibitor OPG-Fc increases cortical and trabecular bone mass in young gonad-intact cynomolgus monkeys. Osteoporos Int 2007; 18 (08) 1073-1082.
  • 17 Sordillo EM, Pearse RN. RANK-Fc: a therapeutic antagonist for RANK-L in myeloma. Cancer 2003; 97 (Suppl. 03) 802-812.
  • 18 Kostenuik PJ, Nguyen HQ, McCabe J. et al. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL. J Bone Miner Res 2009; 24 (02) 182-195.
  • 19 Emery JG, McDonnell P, Burke MB. et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998; 273 (23) 14363-14367.
  • 20 Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 2006; 11 (01) (02) 81-88
  • 21 Pierroz DD, Bonnet N, Baldock PA. et al. Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL. J Biol Chem 2010; 285 (36) 28164-28173.
  • 22 Tat SK, Padrines M, Theoleyre S. et al. OPG/membranous – RANKL complex is internalized via the clathrin pathway before a lysosomal and a proteasomal degradation. Bone 2006; 39 (04) 706-715.
  • 23 Rogers MJ. New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 2003; 9 (32) 2643-2658.
  • 24 Gasser JA, Ingold P, Venturiere A. et al. Long-term protective effects of zoledronic acid on cancellous and cortical bone in the ovariectomized rat. J Bone Miner Res 2008; 23 (04) 544-551.
  • 25 Ominsky MS, Stolina M, Li X. et al. One year of transgenic overexpression of osteoprotegerin in rats suppressed bone resorption and increased vertebral bone volume, density, and strength. J Bone Miner Res 2009; 24 (07) 1234-1246.
  • 26 Li X, Ominsky MS, Stolina M. et al. Increased RANK ligand in bone marrow of orchiectomized rats and prevention of their bone loss by the RANK ligand inhibitor osteoprotegerin. Bone 2009; 45 (04) 669-676.
  • 27 Follet H, Li J, Phipps RJ. et al. Risedronate and alendronate suppress osteocyte apoptosis following cyclic fatigue loading. Bone 2007; 40 (04) 1172-1177.
  • 28 Fuchs RK, Shea M, Durski SL. et al. Individual and combined effects of exercise and alendronate on bone mass and strength in ovariectomized rats. Bone 2007; 41 (02) 290-296.
  • 29 Lespessailles E, Jaffré C, Beaupied H. et al. Does exercise modify the effects of zoledronic acid on bone mass, microarchitecture, biomechanics, and turnover in ovariectomized rats?. Calcif Tissue Int 2009; 85 (02) 146-157.
  • 30 Bekker PJ, Holloway DL, Rasmussen AS. et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res 2004; 19 (07) 1059-1066.
  • 31 Seeman E, Libanati C, Austin M. et al. The Transitory Increase in PTH Following Denosumab Administration is Associated With Reduced Intracortical Porosity: a Distinctive Attribute of Denosumab Therapy. J Bone Miner Res 2011; 26 (Suppl. 01) S22.
  • 32 Rodan G, Reszka A, Golub E, Rizzoli R. Bone safety of long-term bisphosphonate treatment. Curr Med Res Opin 2004; 20 (08) 1291-1300.
  • 33 Compston J. Pathophysiology of atypical femoral fractures and osteonecrosis of the jaw. Osteoporos Int 2011; 22 (12) 2951-2961.
  • 34 Burlinghurst FE, Demay MB, Krane SM, Kronenberg HM. Bone and mineral metabolism in health and disease. In: Kasper DL, Braunwald E, Hauser S. et al., eds. Harrison's Principles of Internal Medicine. 16th edition. New York: McGraw-Hill Professional; 2004