Osteologie 2012; 21(02): 77-82
DOI: 10.1055/s-0037-1621671
Original and review articles
Schattauer GmbH

The OsteoLaus Cohort Study

Bone mineral density, micro-architecture score and vertebral fracture assessment extracted from a single DXA device in combination with clinical risk factors improve significantly the identification of women at high risk of fractureDie OsteoLaus-KohortenstudieDie Kombination aus Knochenmineraldichte, Mikroarchitektur- Score und Wirbelfrakturerkennung, abgeleitet aus einer einzelnen DXA-Aufnahme, und klinischen Risikofaktoren verbessert deutlich die Identifizierung von Frauen mit hohem Frakturrisiko
O. Lamy
1   Centre for Bone Diseases, Lausanne University Hospital, Lausanne, Switzerland
2   Service of internal medicine, Lausanne University Hospital, Lausanne, Switzerland
,
M. -A. Krieg
1   Centre for Bone Diseases, Lausanne University Hospital, Lausanne, Switzerland
,
D. Stoll
1   Centre for Bone Diseases, Lausanne University Hospital, Lausanne, Switzerland
,
B. Aubry-Rozier
1   Centre for Bone Diseases, Lausanne University Hospital, Lausanne, Switzerland
3   Service of Rheumatology, Lausanne University Hospital, Lausanne, Switzerland
,
M. Metzger
1   Centre for Bone Diseases, Lausanne University Hospital, Lausanne, Switzerland
,
D. Hans
1   Centre for Bone Diseases, Lausanne University Hospital, Lausanne, Switzerland
*   for the OsteoLaus Study
› Author Affiliations
Further Information

Publication History

received: 23 April 2012

accepted after revision: 29 May 2012

Publication Date:
04 January 2018 (online)

Zusammenfassung

Eine indirekte Beurteilung der Mikroarchitektur (MA) ist in der täglichen Praxis anhand des TBS (Trabecular Bone Score) näherungsweise möglich. Das Ziel der OsteoLaus-Kohorte besteht darin, klinische Risikofaktoren und Informationen aus der DXA (Knochenmineraldichte [BMD], TBS und Wirbelkörperfrakturerkennung [VFA]) zu kombinieren, um Frauen mit hohem Frakturrisiko leichter zu erkennen. Wir nahmen 631 Frauen im mittleren Alter von 67,4 ± 6,7 J. und mit einem BMI von 26,1 ± 4,6 auf. Es bestand eine schwache Korrelation zwischen BMD und Zentrums-gematchtem TBS (r2 = 0,16). Die Prävalenz von Wirbelfrakturen (VFx) Grad 2/3, größeren osteoporotischen (OP) Frakturen und allen OP-Frakturen betrug 8,4 %, 17,0 % bzw. 26,0 %. Alters- und BMI-adjustierte OR (nach abnehmender SD) lagen bei 1,8 (1,2–2,5), 1,6 (1,2–2,1) bzw. 1,3 (1,1–1,6) für BMD und 2,0 (1,4–3,0), 1,9 (1,4–2,5) bzw. 1,4 (1,1–1,7) für TBS. Die TBS OR (nach abnehmender SD), adjustiert nach Alter, BMI und Wirbelsäulen-BMD, für VFx Grad 2/3, größere und alle OP-Frakturen betrugen 1,7 (1,1–2,7), 1,6 (1,2–2,2) bzw. 1,3 (1,0–1,7). Nur 35 bis 44 % der Frauen mit OP-Frakturen hatten eine BMD <−2,5 SD oder einen TBS < 1.200. Durch Kombination eines BMD < −2,5 SD oder TBS < 1,200 werden 54 bis 60 % der Frauen mit OP-Fraktur erkannt. Somit können wir anhand von VFA, BMD und TBS aus einem einfachen und strahlenarmen Röntgenverfahren, der DXA, Zusatzinformationen gewinnen, die für den Patienten im Praxisalltag von Nutzen sind.

Summary

Indirect micro-architectural (MA) approximation is evaluable in daily practice by the Trabecular Bone Score (TBS) measure. The aim of the OsteoLaus cohort is to combine CRF and the information given by DXA (bone mineral density [BMD], TBS and vertebral fracture assessment [VFA]) to better identify women at high fracture risk. We included 631 women: mean age 67.4 ± 6.7 y, BMI 26.1 ± 4.6. Correlation between BMD and site matched TBS was low (r2 = 0.16). Prevalence of vertebral fractures (VFx) grade 2/3, major OP Fx and all OP Fx was 8.4 %, 17.0 % and 26.0 % respectively. Age- and BMI-adjusted ORs (per SD decrease) were 1.8 (1.2–2.5), 1.6 (1.2–2.1), 1.3 (1.1–1.6) for BMD and 2.0 (1.4–3.0), 1.9 (1.4–2.5), 1.4 (1.1–1.7) for TBS respectively. The TBS ORs (per SD decrease) adjusted for age, BMI and spine BMD for VFx grade 2/3, major and all OP Fx were 1.7 (1.1–2.7),1.6 (1.2–2.2) and 1.3 (1.0–1.7) respectively. Only 35 to 44 % of women with OP Fx had a BMD < ∓2.5 SD or a TBS < 1.200. If we combine a BMD < ∓2.5 SD or a TBS < 1.200, 54 to 60 % of women with an OP Fx are identified. Therefore by using VFA, BMD, and TBS from a simple and low ionizing radiation device, the DXA, we can obtain additional informations which are useful for the patient in the daily practice.

 
  • References

  • 1 Siris ES. et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 2004; 164: 1108-1112.
  • 2 Kanis JA. et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 2007; 18: 1033-1046.
  • 3 Kanis JA. et al. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 2008; 19: 385-397.
  • 4 Kanis JA. et al. Task Force of the FRAX Initiative. Interpretation and use of FRAX in clinical practice. Osteoporos Int 2011; 22: 2395-2411.
  • 5 Cauley JA. et al. Official Positions for FRAX®clinical regarding international differences from Joint Official Positions Development Conference of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX®. J Clin Densitom 2011; 14: 240-262.
  • 6 Sornay-Rendu E. et al. The FRAX tool in French women: How well does it describe the real incidence of fracture in the OFELY cohort?. J Bone Miner Res 2010; 25: 2101-2107.
  • 7 Hordon LD. et al. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: Part I. 2-D histology. Bone 2000; 27: 271-276.
  • 8 Porthuaud L. et al. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 2008; 42: 775-787.
  • 9 Hans D. et al. Correlations between TBS, measured using antero-posterior DXA acquisition, and 3D parameters of bone micro-architecture: an experimental study on human cadaver vertebrae. J Clin Densitom 2011; 14 (03) 302-311.
  • 10 Roux JP. et al. Relationship between Trabecular Bone Score (TBS), Bone Mass and Microarchitecture in Human vertebrae: an ex vivo study. Osteoporos Int 2012; 23 (Suppl. 02) S327-P597.
  • 11 Pothuaud L. et al. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom 2009; 12 (02) 170-176.
  • 12 Rabier B. et al. A multicentre, retrospective casecontrol study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): Analysing the odds of vertebral fracture. Bone 2010; 46: 176-181.
  • 13 Winzenrieth R. et al. A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int 2010; 86: 104-109.
  • 14 Hans D. et al. Bone Micro-Architecture Assessed by TBS Predicts Osteoporotic Fractures Independent of Bone Density: The Manitoba Study. J Bone Miner Res 2011; 26: 2762-2769.
  • 15 Davies KM. et al. Prevalence and severity of vertebral fracture: The Saunders County Bone Quality Study. Osteoporos Int 2005; 6: 160-165.
  • 16 Hasserius R. et al. Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year populationbased study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study. Osteoporos Int 2003; 14: 61-68.
  • 17 O′Neill TW. et al. The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 1996; 11: 1010-1018.
  • 18 Firmann M. et al. The CoLaus study: a populationbased study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC Cardiovasc Disord 2008; 8: 6-16.
  • 19 Lamy O. et al. OsteoLaus: prediction of osteoporotic fractures by clinical risk factors and DXA, IVA and TBS. Rev Med Suisse 2011; 7: 2130-2134.
  • 20 Genant HK. et al. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 1993; 8: 1137-1148.
  • 21 Krieg MA. et al. The micro-architecture estimation by TBS discriminate women with and without osteoporotic fracture independently of age, BMI and BMD: The Osteo-Mobile Vaud cohort study. Osteologie 2012; 21: A23-A24 (V7.4)
  • 22 Del Rio LM. et al. Is bone micro-architecture status at spine assessed by TBS related to femoral neck fracture?. A Spanish case-control study. Osteoporos Int; 2012 May 12. [Epub ahead of print]
  • 23 Colson F. et al. Assessment of osteopenic women microarchitecture with and without osteoporotic fracture by TBS on a new generation bone densitometer. ISCD Annual meeting, Miami. USA: 2011
  • 24 Krueger D. et al. Spine Trabecular Bone Score (TBS) Subsequent to BMD Improves Vertebral and OP Fracture Discrimination in Women. Osteoporosis Int 2012; 23 (Suppl. 02) S85-S386 P616. (full article submitted)
  • 25 Vasic J. et al. Spine Microarchitecture Estimation (TBS) Discriminates Major OP Fracture From Controls equally well than Site Matched BMD and Independently: The Eastern Europe Study. Osteoporosis Int 2012; 23 (Suppl. 02) S85-S386 P619.
  • 26 Boutroy S. et al. Trabecular Bone Score helps classifying women at risk of fracture:a prospective analysis within the OFELY Study. J Bone Miner Res 2010. Suppl. ASBMR: Toronto, CA; 2010
  • 27 Popp AW. et al. Bone Mineral Density (BMD) Combined with Microarchitecture Parameters (TBS) significantly improves the Identification of Women at High Risk of Fracture: The SEMOF Cohort Study. Osteoporos Int 2012; 23 (Suppl. 02) P598.
  • 28 Krieg MA. et al. Effects of Anti-resorptive Agents on Bone Micro-Architecture Assessed by Trabecular Bone Score (TBS) in Older Women. Osteoporosis Int. article submitted
  • 29 Popp AW. et al. Beneficial Effect of Zoledronate Compared to Placebo on Spine BMD and Microarchitecture (TBS) Parameters in Postmenopausal Women with Osteoporosis. A 3-Year Study. Osteoporosis Int 2012; 23 (Suppl. 02) S85-S386 (P599).
  • 30 Günther B. et al. Beneficial Effect of PTH on Spine BMD and Microarchitecture (TBS) Parameters in Postmenopausal Women with Osteoporosis. A 2-Year Study. Osteoporosis Int 2012; 23 (Suppl. 02) S85-S386 (P609)
  • 31 Hadji P. et al. Effects of Exemestane and Tamoxifen treatments on bone quantity and quality in patient with breast cancer. Osteoporosis Int 2012; 23 (Suppl. 02) S85-S386 P518.
  • 32 Hans D. et al. Beneficial Effects of Strontium Ranelate Compared to Alendronate on Trabecular Bone Score in Post Menopausal Osteoporotic Women. A 2-Year Study. Osteoporosis Int 2012; 23 (Suppl. 02) S85-S386 P471.
  • 33 Hans D. et al. What should be the intervention thresholds of TBS used as major risk factors of osteoporotic fractures? A Meta-like analysis. Osteoporos Int 2012; 23 (Suppl. 02) S85-S386 P542.
  • 34 Leslie WD. et al. Baseline trabecular Bone Score (TBS) predicts factors associated with bone microarchitecture: The Manitoba Study. Osteoporosis Int. article submitted.
  • 35 Bréban S. et al. Identification of Rheumatoid Arthritis Patients with Vertebral Fractures Using Bone Mineral Density and Trabecular Bone Score. J Clin Densitom 2012. Jan-Mar; online first.
  • 36 Colson F. et al. Trabecular Bone Microarchitecture Alteration in Glucocorticoids Treated Women in Clinical Routine?–A TBS Evaluation. Annual Meeting of the ASBMR. Denver. USA: Sept. 12–15 2009 SU0452 (full article submitted).