Osteologie 2015; 24(02): 76-80
DOI: 10.1055/s-0037-1622051
Osteoporose und Querschnittlähmung
Schattauer GmbH

Osteoporose – was tun bei akuter Querschnittlähmung?

Empfehlungen der Arbeitsgruppe Osteoporose der Deutschsprachigen Medizinischen Gesellschaft für Paraplegie (DMGP)Osteoporosis – what to do in acute cases of SCI? Recommendations of the Osteoporosis Workgroup of the German-speaking Medical Society of Paraplegia (DMGP)
J. Moosburger
1   Rehaklinik Olgabad, Bad Wildbad, Deutschland
,
A. Frotzler
2   Schweizer Paraplegiker-Zentrum, Clinical Trial Unit, Nottwil, Schweiz
,
Y.-B. Kalke
3   Universitäts- und Rehabilitationsklinken Ulm, Querschnittgelähmtenzentrum, Ulm, Deutschland
› Institutsangaben
Weitere Informationen

Publikationsverlauf

23. Februar 2015

01. März 2015

Publikationsdatum:
02. Januar 2018 (online)

Zusammenfassung

Die Querschnittlähmung ist ein hochgradiger Risikofaktor für die Entstehung einer Osteoporose mit gehäuft pathologischen Frakturen der unteren Extremitäten. Bereits in der Akutphase der Lähmung sollte eine Basisdiagnostik durchgeführt werden, um eine unerkannte Osteoporose zu entdecken sowie Ausgangswerte für den weiteren Verlauf zu erhalten. Die Empfehlungen der Arbeitsgruppe Osteoporose der DMGP wurden in Anlehnung an die DVO-Leitlinie “Prophylaxe, Diag-nostik und Therapie der Osteoporose bei Männern ab dem 60. Lebensjahr und bei postmenopausalen Frauen” erarbeitet. Die DXA-Messung und die Bestimmung des Basislabors wird innerhalb von sechs bis acht Wochen nach Lähmungseintritt empfohlen. Als Schwellenwert zur Einleitung der spezifi-schen medikamentösen Osteoporosetherapie bei rollstuhlpflichtiger Querschnittlähmung wird ein T-Score von minus 2,0 oder darunter empfohlen, unabhängig von Alter und Geschlecht. Vitamin D3 und Kalzium sollten unter bestimmten Voraussetzungen substituiert werden, jedenfalls ab einem T-Wert von minus 1,0 oder darunter. Die Osteoporose -therapie bei Querschnittlähmung ist nur unzureichend evidenzbasiert. Insbesondere die Gabe von spezifischen Osteoporosepräpa-raten erfolgt gegebenenfalls “off-label”.

Summary

The wheelchair-associated paraplegia is a main risk factor for the development of SCI-associated osteoporosis, often followed by pathologic fractures of the lower limbs. Thus, basic diagnostics are recommended in as early as the acute phase after an SCI, to detect an unrecognized osteoporosis, and to obtain initial values to determine a respective prognosis and as appropriate to initiate a basic and also a specific therapy if necessary. The recommendations for diagnostics and therapy of the SCI-associated osteoporosis are based on the DVO-guideline “Prevention, diagnostics and therapy of osteoporosis in men over 60 and in postmenopausal women” (Guideline 2006, revised version 2014). The recommendations of the Osteo porosis Workgroup for beginning a specific therapy in cases of SCI-associated osteoporosis were assessed according to the long-term prednisolone-therapy (daily dose 2,5 to 7,5 mg) as implemented in the DVO-guideline. For the early diagnosis and follow-up of osteopenia and osteoporosis, osteo-densitometry is required. According to WHO, DXA-scan-measurement is the gold-standard and according to DVO, no other methods can be recommended to be routinely performed. Following the recommendations of the Osteoporosis Workgroup, performing an osteo-densitometry with a DXA-scan of the lumbar spine (if no lumbar fracture exists) and at least one hip, 6 to 8 weeks after SCI, and additionally the workup of the basic blood panels is advised as described in the DVO-guideline. Regardless of age and gender, a T-score of minus 2,0 should be the set as the threshold for the specific osteoporosis therapy in cases of wheelchair-associated SCI, even in the acute phase. In accordance with the DVO guidelines, after an SCI, the additional intake of vitamin D3 and calcium is recommended in cases of inadequate exposure to sunlight or insufficient quantities of calcium in food, respectively. Furthermore, calcium and vitamin D3 should be always supplemented in patients with a T-score of minus 1,0 or below. The therapy of the SCI-associated osteoporosis is based on a low evidence level. However we shouldn`t deny paraplegic patients the available diagnostic and therapeutic methods, even when the administration of specific osteoporosis medications would be “off label” in use.

 
  • Literatur

  • 1 Gifre L, Vidal J, Carrasco J. et al. Incidence of skeletal fractures after traumatic spinal cord injury: a 10-year follow-up study. Clin Rehabil 2014; 28 (04) 361-369 [Epub 2013/10/08].
  • 2 Pelletier CA, Dumont FS, Leblond J. et al. Selfreport of one-year fracture incidence and osteoporosis prevalence in a community cohort of canadians with spinal cord injury. Top Spinal Cord Inj Rehabil 2014; 20 (04) 302-309 [Epub 2014/12/06].
  • 3 Slade JM, Bickel CS, Modlesky CM. et al. Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women. Osteoporos Int 2005; 16 (03) 263-272.
  • 4 Eser P, Frotzler A, Zehnder Y, Denoth J. Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Arch Phys Med Rehabil 2005; 86 (03) 498-504.
  • 5 Vestergaard P, Krogh K, Rejnmark L, Mosekilde L. Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord 1998; 36 (11) 790-796.
  • 6 Ragnarsson KT, Sell GH. Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil 1981; 62 (09) 418-423.
  • 7 Zerwekh JE, Ruml LA, Gottschalk F, Pak CY. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res 1998; 13 (10) 1594-1601 [Epub 1998/10/23].
  • 8 Olive JL, Dudley GA, McCully KK. Vascular remodeling after spinal cord injury. Med Sci Sports Exerc 2003; 35 (06) 901-907.
  • 9 Thijssen DH, Ellenkamp R, Smits P, Hopman MT. Rapid vascular adaptations to training and detraining in persons with spinal cord injury. Arch Phys Med Rehabil 2006; 87 (04) 474-481.
  • 10 Chantraine A. Actual concept of osteoporosis in paraplegia. Paraplegia 1978; 16 (01) 51-58.
  • 11 Dachverband Osteologie. DVO-Leitlinien. 2014 available from: www.dv-osteologie.org/
  • 12 Eser P, Frotzler A, Zehnder Y. et al. Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 2004; 34 (05) 869-880.
  • 13 Coupaud S, McLean AN, Allan DB. Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia. Skeletal Radiol 2009; 38 (10) 989-995 [Epub 2009/03/12].
  • 14 Rittweger J, Gerrits K, Altenburg T. et al. Bone adaptation to altered loading after spinal cord injury: a study of bone and muscle strength. J Musculoskelet Neuronal Interact 2006; 06 (03) 269-276.
  • 15 Edwards WB, Schnitzer TJ, Troy KL. Reduction in proximal femoral strength in patients with acute spinal cord injury. J Bone Miner Res 2014; 29 (09) 2074-2079 [Epub 2014/03/29].
  • 16 Edwards WB, Schnitzer TJ, Troy KL. The mechanical consequence of actual bone loss and simulated bone recovery in acute spinal cord injury. Bone 2014; 60: 141-147 [Epub 2013/12/24].
  • 17 Roberts D, Lee W, Cuneo RC. et al. Longitudinal study of bone turnover after acute spinal cord injury. J Clin Endocrinol Metab 1998; 83 (02) 415-422.
  • 18 Bauman WA, Spungen AM, Wang J. et al. Continuous loss of bone during chronic immobilization: a monozygotic twin study. Osteoporos Int 1999; 10 (02) 123-127.
  • 19 Wood DE, Dunkerley AL, Tromans AM. Results from bone mineral density scans in twenty-two complete lesion paraplegics. Spinal Cord 2001; 39 (03) 145-148.
  • 20 Nance PW, Schryvers O, Leslie W. et al. Intravenous pamidronate attenuates bone density loss after acute spinal cord injury. Arch Phys Med Rehabil 1999; 80 (03) 243-251.
  • 21 Bubbear JS, Gall A, Middleton FR. et al. Early treatment with zoledronic acid prevents bone loss at the hip following acute spinal cord injury. Osteoporos Int 2011; 22 (01) 271-279 [Epub 2010/04/02].
  • 22 Gilchrist NL, Frampton CM, Acland RH. et al. Alendronate prevents bone loss in patients with acute spinal cord injury: a randomized, doubleblind, placebo-controlled study. J Clin Endocrinol Metab 2007; 92 (04) 1385-1390.
  • 23 Khoo BC, Brown K, Cann C. et al. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteopros Int 2009; 20 (09) 1539-1545.