RSS-Feed abonnieren
DOI: 10.1055/s-0037-1622053
Querschnittassoziierte Osteoporose
Der Leitlinienentwurf der Arbeitsgruppe Osteoporose der Deutschsprachigen Medizinischen Gesellschaft für Paraplegie (DMGP) als DiskussionsgrundlageSpinal Cord Injury related osteoporosisThe draft of the working group for Osteoprosis of the German-speaking Medical Society of Paraplegia (DMGP) as a basis for discussionPublikationsverlauf
eingereicht:
24. März 2015
angenommen:
30. März 2015
Publikationsdatum:
02. Januar 2018 (online)
Zusammenfassung
Als Diskussionsgrundlage liegt der Entwurf einer S1-Leitlinie zur querschnittassoziierten Osteoporose der Arbeitsgruppe Osteoporose der DMGP vor. Der Entwurf wurde u. a. in Anlehnung an die DVO-Leitlinie “Prophylaxe, Diagnostik und Therapie der Osteoporose bei Männern ab dem 60. Lebensjahr und bei postmenopausalen Frauen” erarbeitet. Die Ursache der querschnittassoziierten Osteo -porose ist multifaktoriell, die fehlende mechanische Belastung gilt als ein Hauptfaktor. Der Verlust an Knochenmineraldichte kann bereits innerhalb der ersten Monate nach Rückenmarksverletzung gemessen werden. Osteoporotisch bedingte Frakturen durch inadäquate Traumata treten bei Querschnitt -gelähmten häufig im Bereich des distalen Femurs und der proximalen Tibia auf. Es gibt nur wenige Berichte mit hoher Evidenz zur Prävention oder Therapie einer querschnitt-assoziierten Osteoporose sowie keine Hinweise darauf, inwieweit die Frakturinzidenz tatsächlich beeinflusst werden kann. Bisphosphonate scheinen die Knochenresorption bei Rückenmarksverletzten zu reduzieren. Auch gibt es Hinweise dafür, dass Funktionelle Elektrostimulation (FES) – unter gewissen Voraussetzungen – einen osteogenen Effekt auf die Knochenparameter der gelähmten Extremität besitzt. Eine DXA-Messung an LWS und einer Hüfte sollte innerhalb von sechs bis acht Wochen nach Eintritt der Querschnittlähmung erfolgen, entsprechende Kontrolluntersuchungen nach festgelegten Intervallen einseitig im Hüftbereich. Die Grundmedikation mit Kalzium und Vitamin D wird bei einem T-Score zwischen –1,0 und –2,0 empfohlen, ab –2,0 und darunter zusätzlich die Gabe von Antiresorptiva/ Osteo anabolika. Eine Therapiedauer von mindestens fünf Jahren wird für indiziert gehalten, solange der T-Score –2,0 oder geringer ist.
Summary
The S1-guideline “Spinal Cord Injury related osteoporosis” was worked out as draft by the osteoporosis workgroup of the German-speaking Medical Society of Paraplegia (DMGP). The recommendations are based on the DVO-guideline “Prevention, diagnostics and therapy of osteoporosis in men over 60 and in postmenopausal women” (Guideline 2006, revised version 2014). There are multiple reasons for spinal cord injury (SCI) related osteoporosis additional to the pure mechanical relief. The loss of bone mineral density can be measured within the first months after SCI. Osteoporosis related fractures can be found typically in the region of the distal femur and the proximal tibia without adequate trauma. So far there are not high level evidenced based recommendations for prevention and therapy of osteoporosis in individuals with SCI to minimize the risk of fracture incidence. Bisphosphonates seem to reduce the bone resorption and functional electrical stimulation seems to have a positive influence on the bone density in this special patient group. Osteodensitometry with DXA for lumbar spine and hip region should be performed within six to eight weeks after SCI, further control examinations in a scheduled time frame only on one hip side. Basic medication with calcium and vitamin D3 will be recommended for a t-score between –1.0 and –2.0, additional use of bisphosphonates or osteoanabolic medication for a t-score of < –2.0. This therapy should be given for the duration of at least five years as long as the t-score is < –2.0.
-
Literatur
- 1 Biering-Sorensen F, Bohr H, Schaadt O. Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia 1988; 26 (05) 293-301.
- 2 Eser P, Frotzler A, Zehnder Y, Denoth J. Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Arch Phys Med Rehabil 2005; 86 (03) 498-504.
- 3 DVO. Leitlinie Osteoporose. 2014 available from: http://www.dv-osteologie.org/
- 4 Craven BC, Krassioukov A, Ashe M, Eng J. Bone Health. 2011 available from: http://www.scireproject.com/
- 5 Zerwekh JE, Ruml LA, Gottschalk F, Pak CY. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res 1998; 13 (10) 1594-1601. [Epub 1998/10/23].
- 6 Olive JL, Dudley GA, McCully KK. Vascular remodeling after spinal cord injury. Med Sci Sports Exerc 2003; 35 (06) 901-907.
- 7 Thijssen DH, Ellenkamp R, Smits P, Hopman MT. Rapid vascular adaptations to training and detraining in persons with spinal cord injury. Arch Phys Med Rehabil 2006; 87 (04) 474-481.
- 8 Chantraine A. Actual concept of osteoporosis in paraplegia. Paraplegia 1978; 16 (01) 51-58.
- 9 Van Ouwenaller C, Uebelhart D, Chantraine A. Bone metabolism in hemiplegic patients. Scand J Rehabil Med 1989; 21 (03) 165-170. [Epub 1989/01/01].
- 10 Bauman WA, Spungen AM. Metabolic changes in persons after spinal cord injury. Phys Med Rehabil Clin N Am 2000; 11 (01) 109-140.
- 11 Elefteriou F. Neuronal signaling and the regulation of bone remodeling. Cell Mol Life Sci 2005; 62 (19–20): 2339-2349.
- 12 Maimoun L, Couret I, Micallef JP. et al. Use of bone biochemical markers with dual-energy x-ray absorptiometry for early determination of bone loss in persons with spinal cord injury. Metabolism 2002; 51 (08) 958-963. [Epub 2002/07/30].
- 13 Bauman WA, Spungen AM, Flanagan S. et al. Blunted growth hormone response to intravenous arginine in subjects with a spinal cord injury. Horm Metab Res 1994; 26 (03) 152-156. [Epub 1994/03/01].
- 14 Vaziri ND, Pandian MR, Segal JL. et al. Vitamin D, parathormone, and calcitonin profiles in persons with long-standing spinal cord injury. Arch Phys Med Rehabil 1994; 75 (07) 766-769.
- 15 Maimoun L, Fattal C, Sultan C. Bone remodeling and calcium homeostasis in patients with spinal cord injury: a review. Metabolism 2011; 60 (12) 1655-1663. [Epub 2011/06/03].
- 16 Roberts D, Lee W, Cuneo RC. et al. Longitudinal study of bone turnover after acute spinal cord injury. J Clin Endocrinol Metab 1998; 83 (02) 415-422.
- 17 Dauty M, Perrouin BVerbe, Maugars Y. et al. Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 2000; 27 (02) 305-309.
- 18 Pietschmann P, Pils P, Woloszczuk W. et al. Increased serum osteocalcin levels in patients with paraplegia. Paraplegia 1992; 30 (03) 204-209. [Epub 1992/03/01].
- 19 Maimoun L, Couret I, Mariano-Goulart D. et al. Changes in osteoprotegerin/RANKL system, bone mineral density, and bone biochemicals markers in patients with recent spinal cord injury. Calcif Tissue Int 2005; 76 (06) 404-411. [Epub 2005/04/07].
- 20 Wilmet E, Ismail AA, Heilporn A. et al. Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia 1995; 33 (11) 674-677.
- 21 Garland DE, Stewart CA, Adkins RH. et al. Osteoporosis after spinal cord injury. J Orthop Res 1992; 10 (03) 371-378.
- 22 Biering-Sorensen F, Bohr HH, Schaadt OP. Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 1990; 20 (03) 330-335.
- 23 Frotzler A, Berger M, Knecht H, Eser P. Bone steady-state is established at reduced bone strength after spinal cord injury: A longitudinal study using peripheral quantitative computed tomography (pQCT). Bone 2008; 43 (03) 549-555.
- 24 Eser P, Frotzler A, Zehnder Y. et al. Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 2004; 34 (05) 869-880.
- 25 Garland DE, Adkins RH. Bone loss at the knee in spinal cord injury. Top Spinal Cord Inj Rehabil 2001; 06 (03) 37-46.
- 26 Szollar SM, Martin EM, Parthemore JG. et al. Densitometric patterns of spinal cord injury associated bone loss. Spinal Cord 1997; 35 (06) 374-382.
- 27 Kiratli BJ, Smith AE, Nauenberg T. et al. Bone mineral and geometric changes through the femur with immobilization due to spinal cord injury. J Rehabil Res Dev 2000; 37 (02) 225-233.
- 28 Bauman WA, Spungen AM, Wang J. et al. Continuous loss of bone during chronic immobilization: a monozygotic twin study. Osteoporos Int 1999; 10 (02) 123-127.
- 29 Zehnder Y, Luthi M, Michel D. et al. Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 2004; 15 (03) 180-189.
- 30 Slade JM, Bickel CS, Modlesky CM. et al. Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women. Osteoporos Int 2005; 16 (03) 263-272.
- 31 Sabo D, Blaich S, Wenz W. et al. Osteoporosis in patients with paralysis after spinal cord injury. A cross sectional study in 46 male patients with dualenergy X-ray absorptiometry. Arch Orthop Trauma Surg 2001; 121 (1–2); 75-78.
- 32 Saltzstein RJ, Hardin S, Hastings J. Osteoporosis in spinal cord injury: using an index of mobility and its relationship to bone density. J Am Paraplegia Soc 1992; 15 (04) 232-234.
- 33 Demirel G, Yilmaz H, Paker N, Onel S. Osteoporosis after spinal cord injury. Spinal Cord 1998; 36 (12) 822-825.
- 34 Eser P, Frotzler A, Zehnder Y. et al. Assessment of anthropometric, systemic, and lifestyle factors influencing bone status in the legs of spinal cord injured individuals. Osteoporos Int 2005; 16 (01) 26-34.
- 35 Coupaud S, McLean AN, Allan DB. Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia. Skeletal Radiol 2009; 38 (10) 989-995. [Epub 2009/03/12].
- 36 Wood DE, Dunkerley AL, Tromans AM. Results from bone mineral density scans in twenty-two complete lesion paraplegics. Spinal Cord 2001; 39 (03) 145-148.
- 37 Rittweger J, Gerrits K, Altenburg T. et al. Bone adaptation to altered loading after spinal cord injury: a study of bone and muscle strength. J Musculoskelet Neuronal Interact 2006; 06 (03) 269-276.
- 38 Vestergaard P, Krogh K, Rejnmark L, Mosekilde L. Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord 1998; 36 (11) 790-796.
- 39 Szollar SM, Martin EM, Sartoris DJ. et al. Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil 1998; 77 (01) 28-35.
- 40 Fattal C, Mariano-Goulart D, Thomas E. et al. Osteoporosis in persons with spinal cord injury: the need for a targeted therapeutic education. Arch Phys Med Rehabil 2011; 92 (01) 59-67. [Epub 2010/12/29].
- 41 Ragnarsson KT, Sell GH. Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil 1981; 62 (09) 418-423.
- 42 Morse LR, Battaglino RA, Stolzmann KL. et al. Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int 2009; 20 (03) 385-392. [Epub 2008/06/27].
- 43 Chhabra HS, Harvey LA, Muldoon S. et al. www.elearnSCI.org: a global educational initiative of ISCoS. Spinal Cord 2013; 51 (03) 176-182. [Epub 2013/03/02].
- 44 Bauman WA, Wecht JM, Kirshblum S. et al. Effect of pamidronate administration on bone in patients with acute spinal cord injury. J Rehabil Res Dev 2005; 42 (03) 305-313.
- 45 Chappard D, Minaire P, Privat C. et al. Effects of tiludronate on bone loss in paraplegic patients. J Bone Miner Res 1995; 10 (01) 112-118. [Epub 1995/01/01].
- 46 Pearson EG, Nance PW, Leslie WD, Ludwig S. Cyclical etidronate: its effect on bone density in patients with acute spinal cord injury. Arch Phys Med Rehabil 1997; 78 (03) 269-272. [Epub 1997/03/01].
- 47 Shapiro J, Smith B, Beck T. et al. Treatment with zoledronic acid ameliorates negative geometric changes in the proximal femur following acute spinal cord injury. Calcif Tissue Int 2007; 80 (05) 316-322. [Epub 2007/04/10].
- 48 Gilchrist NL, Frampton CM, Acland RH. et al. Alendronate prevents bone loss in patients with acute spinal cord injury: a randomized, doubleblind, placebo-controlled study. J Clin Endocrinol Metab 2007; 92 (04) 1385-1390.
- 49 Bubbear JS, Gall A, Middleton FR. et al. Early treatment with zoledronic acid prevents bone loss at the hip following acute spinal cord injury. Osteoporos Int 2011; 22 (01) 271-279. [Epub 2010/04/02].
- 50 Nance PW, Schryvers O, Leslie W. et al. Intravenous pamidronate attenuates bone density loss after acute spinal cord injury. Arch Phys Med Rehabil 1999; 80 (03) 243-251.
- 51 Zehnder Y, Risi S, Michel D. et al. Prevention of bone loss in paraplegics over 2 years with alendronate. J Bone Miner Res 2004; 19 (07) 1067-1074.
- 52 Moran CMde Brito, Battistella LR, Saito ET, Sakamoto H. Effect of alendronate on bone mineral density in spinal cord injury patients: a pilot study. Spinal Cord 2005; 43 (06) 341-348.
- 53 Brown JP, Morin S, Leslie W. et al. Bisphosphonates for treatment of osteoporosis: Expected benefits, potential harms, and drug holidays. Can Fam Physician 2014; 60 (04) 324-333. [Epub 2014/04/16].
- 54 Frey-Rindova P, de Bruin ED, Stussi E. et al. Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 2000; 38 (01) 26-32.
- 55 Giangregorio LM, Hicks AL, Webber CE. et al. Body weight supported treadmill training in acute spinal cord injury: impact on muscle and bone. Spinal Cord 2005; 43 (11) 649-657.
- 56 Goktepe AS, Tugcu I, Yilmaz B. et al. Does standing protect bone density in patients with chronic spinal cord injury?. J Spinal Cord Med 2008; 31 (02) 197-201. [Epub 2008/06/28].
- 57 Goktepe AS, Yilmaz B, Alaca R. et al. Bone density loss after spinal cord injury: elite paraplegic basketball players vs. paraplegic sedentary persons. Am J Phys Med Rehabil 2004; 83 (04) 279-283. [Epub 2004/03/17].
- 58 Petrofsky JS, Phillips CA. The use of functional electrical stimulation for rehabilitation of spinal cord injured patients. Cent Nerv Syst Trauma 1984; 01 (01) 57-74. [Epub 1984/01/01].
- 59 Eser P, de Bruin ED, Telley I. et al. Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. Eur J Clin Invest 2003; 33 (05) 412-419.
- 60 Frotzler A, Coupaud S, Perret C. et al. High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury. Bone 2008; 43 (01) 169-176.
- 61 Shields RK, Dudley-Javoroski S, Law LA. Electrically induced muscle contractions influence bone density decline after spinal cord injury. Spine 2006; 31 (05) 548-553.
- 62 BeDell KK, Scremin AM, Perell KL, Kunkel CF. Effects of functional electrical stimulation-induced lower extremity cycling on bone density of spinal cord-injured patients. Am J Phys Med Rehabil 1996; 75 (01) 29-34.
- 63 Mohr T, Andersen JL, Biering-Sorensen F. et al. Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord 1997; 35 (01) 1-16.
- 64 Bloomfield SA, Mysiw WJ, Jackson RD. Bone mass and endocrine adaptations to training in spinal cord injured individuals. Bone 1996; 19 (01) 61-68.
- 65 Biering-Sorensen F, Hansen B, Lee BS. Non-pharmacological treatment and prevention of bone loss after spinal cord injury: a systematic review. Spinal Cord 2009; 47 (07) 508-518. [Epub 2009/01/28].
- 66 Lai CH, Chang WH, Chan WP. et al. Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury. Journal of rehabilitation medicine 2010; 42 (02) 150-154. [Epub 2010/02/09].
- 67 Leeds EM, Klose KJ, Ganz W. et al. Bone mineral density after bicycle ergometry training. Arch Phys Med Rehabil 1990; 71 (03) 207-209. [Epub 1990/03/01].
- 68 Belanger M, Stein RB, Wheeler GD. et al. Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals?. Arch Phys Med Rehabil 2000; 81 (08) 1090-1098.
- 69 Chen SC, Lai CH, Chan WP. et al. Increases in bone mineral density after functional electrical stimulation cycling exercises in spinal cord injured patients. Disabil Rehabil 2005; 27 (22) 1337-1341.
- 70 Clark JM, Jelbart M, Rischbieth H. et al. Physiological effects of lower extremity functional electrical stimulation in early spinal cord injury: lack of efficacy to prevent bone loss. Spinal Cord 2007; 45 (01) 78-85. [Epub 2006/04/26].
- 71 Groah SL, Lichy AM, Libin AV, Ljungberg I. Intensive electrical stimulation attenuates femoral bone loss in acute spinal cord injury. PM & R: the journal of injury, function, and rehabilitation 2010; 02 (12) 1080-1087. [Epub 2010/12/15].
- 72 Griffin L, Decker MJ, Hwang JY. et al. Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol 2009; 19 (04) 614-622. [Epub 2008/04/29].
- 73 Chang KV, Hung CY, Chen WS. et al. Effectiveness of bisphosphonate analogues and functional electrical stimulation on attenuating post-injury osteoporosis in spinal cord injury patients - a systematic review and meta-analysis. PloS one 2013; 08 (11) e81124 [Epub 2013/11/28]..
- 74 Hartkopp A, Murphy RJ, Mohr T. et al. Bone fracture during electrical stimulation of the quadriceps in a spinal cord injured subject. Arch Phys Med Rehabil 1998; 79 (09) 1133-1136.
- 75 Kalke YB, Dreinhoefer K, Brenner R, Reichel H. Antiosteoporotic effects of alendronate on younger patients with acute spinal cord injury. 47th ISCOS Annual Scientific Meeting; Durban: 2008
- 76 Kalke YB, Reichel H. The actualized osteoporosis guidelines of the German bone research societies and their value for the SCI centres. ISCOS; New Dehli: 2010