Osteologie 2017; 26(01): 18-24
DOI: 10.1055/s-0037-1622079
Sarkopenie
Schattauer GmbH

Muskelbildgebung bei Sarkopenie

Imaging techniques in sarcopenia
K. Engelke
1   Institut für Medizinische Physik, Universität Erlangen-Nürnberg, Erlangen
,
A. Grimm
1   Institut für Medizinische Physik, Universität Erlangen-Nürnberg, Erlangen
,
A. Mühlberg
1   Institut für Medizinische Physik, Universität Erlangen-Nürnberg, Erlangen
,
A. Friedberger
1   Institut für Medizinische Physik, Universität Erlangen-Nürnberg, Erlangen
,
O. Chaudry
1   Institut für Medizinische Physik, Universität Erlangen-Nürnberg, Erlangen
,
O. Museyko
1   Institut für Medizinische Physik, Universität Erlangen-Nürnberg, Erlangen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht: 11. Januar 2017

angenommen: 21. Januar 2017

Publikationsdatum:
02. Januar 2018 (online)

Zusammenfassung

Dieser Beitrag gibt einen Überblick über das Potenzial und den Einsatz der bildgebenden Verfahren DXA, MRT und CT in der Sarkopenie. Ganzkörper-DXA ist neben der Bioimpedanzanalyse das Standardverfahren zur Bestimmung der appendikulären Muskelmasse, die Bestandteil der operationellen Definition der Sarkopenie ist. Im Vergleich zum projektiven DXA-Verfahren kann mit MRT oder CT das Muskelvolumen und die 3D-Verteilung des Fettgehaltes im Muskel bestimmt werden. Erste Studien zeigen, dass die Bestimmung der Fett- und Muskelmasse einen wichtigen Beitrag zur Frakturprädiktion leisten kann. Die Verknüpfung von Osteoporose und Sarkopenie zur Sarkoporose erscheint vielversprechend.

Summary

This is an overview of the potential and current use of imaging techniques (DXA, MRT and CT) in sarcopenia. Whole body DXA and bioimpedance analysis are standard techniques for the measurement of appendicular muscle mass, which is an integral part of the operational sarcopenia definition. In contrast to the projectional DXA method, the 3D imaging techniques of MRI or CT can provide further information on muscle volume and the distribution of adipose tissue within a muscle. First pilot studies show that these measurements may improve fracture prediction. Sarcoporosis, the combination of sarcopenia and osteoporosis is a promising concept.

 
  • Literatur

  • 1 Ortolan P, Zanato R, Coran A. et al. Role of Radiologic Imaging in Genetic and Acquired Neuromuscular Disorders. Eur J Transl Myol 2015; 25: 5014.
  • 2 Simon NG, Noto YI, Zaidman CM. Skeletal muscle imaging in neuromuscular disease. J Clin Neurosci 2016; 33: 1-10.
  • 3 Dixon WT. Simple Proton Spectroscopic Imaging. Radiology 1984; 153: 189-194.
  • 4 Frost HM. Muscle, bone, and the Utah paradigm: a 1999 overview. Med Sci Sports Exerc 2000; 32: 911-917.
  • 5 Schoenau E. From mechanostat theory to development of the “Functional Muscle-Bone-Unit”. J Musculoskelet Neuronal Interact 2005; 05: 232-238.
  • 6 Kemmler W, Bebenek M, Kohl M, von Stengel S. Exercise and fractures in postmenopausal women. Final results of the controlled Erlangen Fitness and Osteoporosis Prevention Study (EFOPS). Osteoporos Int 2015; 26: 2491-2499.
  • 7 Kemmler W, von Stengel S. Dose-response effect of exercise frequency on bone mineral density in post-menopausal, osteopenic women. Scand J Med Sci Sports 2014; 24: 526-534.
  • 8 Kemmler W, von Stengel S, Engelke K. et al. Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Intern Med 2010; 170: 179-185.
  • 9 Cruz-Jentoft AJ, Baeyens JP, Bauer JM. et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010; 39: 412-423.
  • 10 Di Monaco M, Vallero F, Di Monaco R, Tappero R. Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch Gerontol Geriatr 2011; 52: 71-74.
  • 11 Kanis JA. WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporosis Int 1994; 04: 368-381.
  • 12 Kemmler W, von Stengel S, Engelke K. et al. Prevalence of sarcopenic obesity in Germany using established definitions: Baseline data of the FORMOsA study. Osteoporos Int 2016; 27: 275-281.
  • 13 Morley JE, Abbatecola AM, Argiles JM. et al. Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 2011; 12: 403-409.
  • 14 International Atomic Energy Agency. Dual Energy X ray absorptiometry for bone mineral density and body composition. IAEA Human Health Series. 2010
  • 15 Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol 1996; 271: E941-E951.
  • 16 Patterson PE, Distel M. Development of an underwater weighing system for determining body composition. Biomed Sci Instrum 1997; 34: 363-367.
  • 17 Siri WE. Body composition from fluid spaces and density: analysis of methods. 1961. Nutrition 1993; 09: 480-491. discussion 480, 492..
  • 18 Woodrow G. Body composition analysis techniques in the aged adult: indications and limitations. Curr Opin Clin Nutr Metab Care 2009; 12: 8-14.
  • 19 Visser M, Fuerst T, Lang T. et al. Validity of fanbeam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. Health, Aging, and Body Composition Study - Dual-Energy X-ray Absorptiometry and Body Composition Working Group. J Appl Physiol (1985) 1999; 87: 1513-1520.
  • 20 Shepherd JA, Fan B, Lu Y, Wu XP, Wacker WK, Ergun DL. et al. A multinational study to develop universal standardization of whole-body bone density and composition using GE Healthcare Lunar and Hologic DXA systems. J Bone Miner Res 2012; 27: 2208-2216.
  • 21 Bredella MA, Ghomi RH, Thomas BJ. et al. Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity (Silver Spring) 2010; 18: 2227-2233.
  • 22 Maden-Wilkinson TM, Degens H, Jones DA, McPhee JS. Comparison of MRI and DXA to measure muscle size and age-related atrophy in thigh muscles. J Musculoskelet Neuronal Interact 2013; 13: 320-328.
  • 23 Chowdhury B, Sjostrom L, Alpsten M. et al. A multicompartment body composition technique based on computerized tomography. Int J Obes Relat Metab Disord 1994; 18: 219-234.
  • 24 Snyder WS, Cook MJ, Nasset ES. et al. Report of the task group on reference man. 23rd International Commission on Radiological Protection. Oxford, UK: Pergamon; 1975
  • 25 Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011; 34: 729-749.
  • 26 Pineda N, Sharma P, Xu Q. et al. Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy – a rapid and accurate technique. Radiology 2009; 252: 568-576.
  • 27 Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging 2008; 28: 543-558.
  • 28 Glover GH. Multipoint Dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging 1991; 01: 521-530.
  • 29 Engelke K, Muhlberg A, Pottecher P. et al. Can muscle and lipid parameters discriminate hip fractures as eell as BMD?. Osteoporosis International 2015; 26: S275-S276.
  • 30 Mühlberg A, Museyko O, Laredo JD, Engelke K. A Reproducible Semi-Automatic Method to quantify the Muscle-Lipid Distribution in CT Images of the Thigh. PlosOne in revision Jan 2017
  • 31 Goodpaster BH, Kelley DE, Thaete FL. et al. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol (1985) 2000; 89: 104-110.
  • 32 Goodpaster BH, Thaete FL, Kelley DE. Composition of skeletal muscle evaluated with computed tomography. Ann N Y Acad Sci 2000; 904: 18-24.
  • 33 Lang T, Cauley JA, Tylavsky F. et al. Computed tomographic measurements of thigh muscle crosssectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res 2010; 25: 513-519.
  • 34 Daguet E, Jolivet E, Bousson V. et al. Fat content of hip muscles: an anteroposterior gradient. J Bone Joint Surg Am 2011; 93: 1897-1905.
  • 35 Hangartner TN, Warner S, Braillon P. et al. The Official Positions of the International Society for Clinical Densitometry: acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J Clin Densitom 2013; 16: 520-536.
  • 36 Krueger D, Libber J, Sanfilippo J. et al. Spine Phantoms are Inadequate for DXA Whole Body Composition Cross-Calibration. Esceo IOF Osteoporosis International. 2014