Tierarztl Prax Ausg K Kleintiere Heimtiere 2012; 40(05): 325-332
DOI: 10.1055/s-0038-1623663
Originalartikel
Schattauer GmbH

Untersuchungen zu erniedrigten Glukosewerten im Liquor cerebrospinalis des Hundes

Evaluation of decreased glucose levels in the cerebrospinal fluid of dogs
J. Weber
1   Klinik für Kleintiere, Stiftung Tierärztliche Hochschule Hannover
,
A. Maiolini
1   Klinik für Kleintiere, Stiftung Tierärztliche Hochschule Hannover
,
A. Tipold
1   Klinik für Kleintiere, Stiftung Tierärztliche Hochschule Hannover
› Author Affiliations
Further Information

Publication History

Eingegangen: 29 March 2011

Akzeptiert nach Revision: 28 March 2012

Publication Date:
06 January 2018 (online)

Zusammenfassung

Gegenstand und Ziel: Charakterisierung des Glukosewerts im Liquor cerebrospinalis (Liquor) als schnell verfügbarer Marker zur Abgrenzung einer bakteriellen Meningoenzephalomyelitis von anderen Erkrankungen des zentralen Nervensystems bei Hunden.

Material und Methoden: Retrospektive Auswertung der Befunde von Blutund Liquorproben (n = 328) von Hunden mit neurologischen Erkrankungen (sterileitrige Meningitis-Arteriitis [SRMA], Diskopathie [IVDD], Neoplasie des ZNS [N], idiopathische Epilepsie [IE], bakterielle Meningoenzephalomyelitis [BM], Meningoenzephalomyelitiden anderer Ursachen [ME]) sowie von gesunden Hunden.

Ergebnisse: Die Glukosewerte (mmol/l) im Liquor der Gruppe SRMA differierten signifikant von denen der Gruppen IVDD, N und denen gesunder Hunde (p < 0,01) und wiesen den niedrigsten Median auf. Die Gruppe BM unterschied sich in diesem Parameter nicht signifikant von den anderen Gruppen. Der Glukosequotient (Glukosewert im Liquor/Glukosewert im Blut) fiel bei Hunden mit SRMA signifikant niedriger aus bei Hunden mit den Diagnosen IVDD, N sowie IE (p < 0,05). Die Glukosequotienten bei der Diagnose BM waren nicht signifikant niedriger als jene der anderen Gruppen, lagen aber im Bereich der in der SRMA-Gruppe ermittelten Werte. Zwischen den Zellzahlen im Liquor und dem Glukosequotienten bestand eine negative Korrelation (Korrelationskoeffizient nach Spearman –0,322, Signifikanz p = 0,01, R2 = 0,108).

Schlussfolgerung: Der Glukosewert im Liquor kann nicht als empfindlicher Parameter für eine diagnostische Abgrenzung der bakteriellen Meningitis zur SRMA, die mit einer fulminanten neutrophilen Pleozytose einhergeht, herangezogen werden. Ein niedriger Glukosewert im Liquor scheint eher durch eine erhöhte Zellzahl als durch den Bakterienstoffwechsel bedingt zu sein.

Klinische Relevanz: Zur eindeutigen Diagnose einer BM ist weiterhin ein direkter Nachweis des Infektionserregers erforderlich.

Summary

Objective: The aim of the study was to evaluate the glucose ratio (glucose level in the cerebrospinal fluid [CSF]/blood glucose level) as a quickly available marker for detecting bacterial meningoencephalomyelitis (BM).

Material and methods: Blood and CSF samples of 328 dogs were reviewed and evaluated retrospectively. Following the neurological diagnosis, the dogs were assigned to seven different groups: steroid-responsive meningitis-arteritis (SRMA), intervertebral disc disease (IVDD), neoplasia of the central nervous system (N), idiopathic epilepsy (IE), bacterial meningoencephalomyelitis (BM), meningoencephalomyelitis of other origin (ME) and healthy dogs.

Results: The median of the CSF-glucose level (mmol/l) and the median of the glucose ratio in the SRMA group displayed the lowest values and differed significantly from the CSF-glucose levels of dogs in the groups IVDD, N, IE and healthy dogs (CSF-glucose level: p < 0.01; glucose ratio: p < 0.05). In the BM group, both parameters did not differ significantly from other groups, but displayed similar low levels as in the SRMA group. There was a negative correlation between the CSF cell count and the CSF-glucose ratio (Spearman correlation coefficient –0.322, p = 0.01, R2 = 0.108).

Conclusion: The CSF-glucose concentration cannot be used as a distinct marker to differentiate BM from other inflammatory CNS-diseases, especially from SRMA usually accompanied by severe pleocytosis. Low CSF-glucose levels appear to be caused by elevated CSF cell counts rather than by bacterial metabolism.

Clinical relevance: For a definitive diagnosis of bacterial meningoencephalomyelitis in dogs, the detection of microorganisms remains necessary.

 
  • Literatur

  • 1 Anfinsen KP, Berendt M, Liste FJH, Haagensen TR, Indrebo A, Lingaas F. et al. A retrospective epidemiological study of clinical signs and familial predisposition associated with aseptic meningitis in the Norwegian population of Nova Scotia duck tolling retrievers born 1994–2003. Can J Vet Res 2008; 72: 350-355.
  • 2 Bohn AA, Wills TB, West CL, Tucker RL, Bagley RS. Cerebrospinal fluid analysis and magnetic resonance imaging in the diagnosis of neurologic disease in dogs: a retrospective study. Vet Clin Pathol 2006; 35: 315-320.
  • 3 Boysen SR, Bozzetti M, Rose L, Dunn M, Pang DSJ. Effects of prednisone on blood lactate concentrations in healthy dogs. J Vet Intern Med 2009; 23 (05) 1123-1125.
  • 4 Cizinauskas S, Jaggy A, Tipold A. Long-term treatment of dogs with steroidresponsive meningitis-arteritis: clinical, laboratory and therapeutic results. J Small Anim Pract 2000; 41 (07) 295-301.
  • 5 Dawson KG, Emerson JC, Burns JL. Fifteen years of experience with bacterial meningitis. Pediatr Infect Dis J 1999; 18: 816-822.
  • 6 De Lahunta A, Glass E. Veterinary Neuroanatomy and Clinical Neurology. 3rd ed.. St. Louis: Saunders, Elsevier Science; 2009
  • 7 Deisenhammer F, Bartos A, Egg R, Gilhus NE, Giovannon G, Rauer S. et al. Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force. Eur J Neurol 2006; 13: A1-A10.
  • 8 Dewey CM. A Practical Guide to Canine and Feline Neurology. 2nd ed. Iowa: Wiley-Blackwell; 2008
  • 9 Di Terlizzi R, Platt S. The function, composition and analysis of cerebrospinal fluid in companion animals: Part I – Function and composition. Vet J 2006; 172 (03) 422-431.
  • 10 Hegen H, Deisenhammer F. Cerebrospinal fluid biomarkers in bacterial meningitis. Lab Med 2009; 33 (06) 321-331.
  • 11 Henneman DH, Bunker JP. Pattern of intermediary carbohydrate metabolism in Cushing’s syndrome. Am J Med 1957; 23 (01) 34-45.
  • 12 Irwin PJ, Parry BW. Streptococcal meningoencephalitis in a dog. J Am Anim Hosp Assoc 1999; 35 (05) 417-422.
  • 13 Kleine TO, Zwerenz P, Zofel P, Shiratori K. New and old diagnostic markers of meningitis in cerebrospinal fluid (CSF). Brain Res Bull 2003; 61 (03) 287-297.
  • 14 Lowrie M, Penderis J, McLaughlin M, Eckersall PD, Anderson TJ. Steroid responsive meningitis-arteritis: A prospective study of potential disease markers, prednisolone treatment, and long-term outcome in 20 Dogs (2006–2008). J Vet Intern Med 2009; 23 (04) 862-870.
  • 15 Lussier B, Vranic M, Gauthier C, Hetenyi G. Glucoregulation in dogs treated with methyl-prednisolone. Metab Clin Exp 1985; 34 (10) 906-911.
  • 16 Melby JC. Clinical pharmacology of systemic corticosteroids. Annu Rev Pharmacol Toxicol 1977; 17: 511-527.
  • 17 Meric SM. Canine meningitis – a changing emphasis. J Vet Intern Med 1988; 02 (01) 26-35.
  • 18 Poncelet L, Balligand M. Steroid responsive meningitis in three Boxer dogs. Vet Rec 1993; 132 (14) 361-362.
  • 19 Radaelli ST, Platt SR. Bacterial meningoencephalomyelitis in dogs: A retrospective study of 23 cases (1990–1999). J Vet Intern Med 2002; 16 (02) 159-163.
  • 20 Saravolatz LD, Manzor O, Vandervelde N, Pawlak J, Belian B. Broad-range bacterial polymerase chain reaction for early detection of bacterial meningitis. Clin Infect Dis 2003; 36: 40-45.
  • 21 Schuurman T, de Boer RF, Kooistra-Smid AM, van Zwet AA. Prospective study of use of PCR amplification and sequencing of 16S ribosomal DNA from cerebrospinal fluid for diagnosis of bacterial meningitis in a clinical setting. J Clin Microbiol 2004; 42: 734-740.
  • 22 Schwartz M, Carlson R, Tipold A. Selective CD11a upregulation on neutrophils in the acute phase of steroid-responsive meningitis-arteritis in dogs. Vet Immunol Immunopathol 2008; 126 3–4: 248-255.
  • 23 Schwartz M, Moore PF, Tipold A. Disproportionally strong increase of B cells in inflammatory cerebrospinal fluid of dogs with steroid-responsive meningitis-arteritis. Vet Immunol Immunopathol 2008; 125 3–4: 274-283.
  • 24 Straus SE, Thorpe KE, Holroyd-Leduc J. How do I perform a lumbar puncture and analyze the results to diagnose bacterial meningitis?. JAMA 2006; 296 (16) 2012-2022.
  • 25 Tipold A. Steroid-responsive meningitis-arteritis in dogs. In: Kirk’s Current Veterinary Therapy XIV: Small Animal Practice. Bonagura J, Twedt D. eds. Philadelphia, USA: Saunders Elsevier; 2009: 978-981.
  • 26 Tipold A. Cerebrospinal fluid. In: Clinical Neurology in Small Animals. Braund KG. ed. Ithaca, New York, USA: International Veterinary Information Service; 2003
  • 27 Tipold A. Diagnosis of inflammatory and infectious diseases of the central nervous system in dogs – a retrospective study. J Vet Intern Med 1995; 09 (05) 304-314.
  • 28 Tipold A, Fatzer R, Jaggy A, Zurbriggen A, Vandevelde M. Necrotizing encephalitis in Yorkshire terriers. J Small Anim Pract 1993; 34 (12) 623-628.
  • 29 Tipold A, Jaggy A. Steroid-responsive meningitis-arteritis in dogs – longterm study of 32 cases. J Small Anim Pract 1994; 35 (06) 311-316.
  • 30 Tipold A, Moore P, Zurbriggen A, Vandevelde M. Lymphocyte subset distribution in steroid responsive meningitis-arteriitis in comparison to different canine encephalitides. J Vet Med A Physiol Pathol Clin Med 1999; 46 (02) 75-85.
  • 31 Tipold A, Pfister H, Zurbriggen A, Vandevelde M. Intrathecal synthesis of major immunoglobulin classes in inflammatory diseases of the canine CNS. Vet Immunol Immunopathol 1994; 42 (02) 149-159.
  • 32 Tipold A, Vandevelde M, Zurbriggen A. Neuroimmunological studies in steroid-responsive meningitis-arteritis in dogs. Res Vet Sci 1995; 58 (02) 103-108.
  • 33 Vite CH. Inflammatory diseases of the central nervous system. In: Braund’s Clinical Neurology in Small Animals: Localization, Diagnosis and Treatment. Vite CH. ed. International Veterinary Information Service (www.ivis. org); Ithaca, New York, USA: 2005