Nuklearmedizin 2001; 40(02): 44-50
DOI: 10.1055/s-0038-1623991
Originalarbeiten – Original Articles
Schattauer GmbH

Radioisotope albumin flux measurement of microvascular lung permeability: an independent parameter in acute respiratory failure?

Radioisotopen-Albuminflux-Messungen der mikro vaskulären Lungenpermeabilität: ein unabhängiger Parameter beim akuten Lungenversagen?
S. Hoegerle
1   Division of Nuclear Medicine
,
A. Benzing
2   Department of Anesthesiology
,
E. U. Nitzsche
1   Division of Nuclear Medicine
,
Schulte J. Moenting
3   Department of Medical Biometry and Statistics, Albert-Ludwigs-University, Freiburg, Germany
,
M. J. Reinhardt
1   Division of Nuclear Medicine
,
K. Geiger
2   Department of Anesthesiology
,
E. Moser
1   Division of Nuclear Medicine
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 18. September 2000

in revise form: 19. November 2000

Publikationsdatum:
10. Januar 2018 (online)

Summary

Aim: To evaluate the extent to which single measurements of microvascular lung permeability may be relevant as an additional parameter in a heterogenous clinical patient collective with Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Methods: In 36 patients with pneumonia (13), non pneumogenic sepsis (9) or trauma (14) meeting the consensus conference criteria of ALI or ARDS double-isotope protein flux measurements (51Cr erythrocytes as intravascular tracer, Tc-99m human albumin as diffusible tracer) of microvascular lung permeability were performed using the Normalized Slope Index (NSI). The examination was to determine whether there is a relationship between the clinical diagnosis of ALI/ARDS, impaired permeability and clinical parameters, that is the underlying disease, oxygenation, duration of mechanical ventilation and mean pulmonary-artery pressure (PAP). Results: At the time of study, 25 patients presented with increased permeability (NSI > 1 × 10-3 min1) indicating an exudative stage of disease, and 11 patients with normal permeability. The permeability impairment correlated with the underlying disease (p >0.05). With respect to survival, there was a negative correlation to PAP (p <0.01). Apart from that no correlations between the individual parameters were found. Especially no correlation was found between permeability impairment and oxygenation, duration of disease or PAP. Conclusion: In ALI and ARDS, pulmonary capillary permeability is a diagnostic parameter which is independent from clinical variables. Permeability measurement makes a stage classification (exudative versus non exudative phase) of ALI/ARDS possible based on a measurable pathophysiological correlate.

Zusammenfassung

Ziel: Es sollte evaluiert werden, inwieweit Einzelmessungen der mikrovaskulären Lungenpermeabilität als zusätzlicher Parameter bei einem heterogenen klinischen Patientenkollektiv mit Acute Lung Injury (ALI) und akutem Lungenversagen (ARDS) sinnvoll sind. Methoden: Bei 36 Patienten mit Pneumonie (13), nicht pneumogener Sepsis (9) oder Trauma (14), die die Konsensus-Kriterien des AU oder ARDS erfüllten, wurden Permeabilitätsmessungen der Lunge durchgeführt. Zum Einsatz kam eine Doppelisotopenmethode (Cr-51 Erythrozyten als intravaskulärer Tracer, Tc-99m Humanalbumin als diffusibler Tracer) unter Verwendung des Normalized Slope Index. Durch Regressionsanalysen wurde bestimmt, ob ein Zusammenhang besteht zwischen der klinischen Diagnose eines ALI/ARDS, einer erhöhten Permeabilität und klinischen Parametern wie Grunderkrankung, Oxygenierung, Erkrankungsdauer bis zur Messung und mittlerem pulmonal-arteriellen Druck (PAP). Ergebnisse: Zum Zeitpunkt der Permeabilitätsmessung wiesen 25 Patienten eine erhöhte Kapillarpermeabilität (NSI > 1 × 10-3 min-1) als Zeichen einer exsudativen Krankheitsphase auf, während bei 11 Patienten eine normale Permeabilität vorlag. Die Permeabilitätserhöhung korrelierte mit der Grunderkrankung (p <0,05). Bezüglich des Überlebens fand sich eine negative Korrelation zum PAP (p <0,01). Weitere Korrelationen zwischen den Einzelparametern fanden sich nicht. Insbesondere zeigte der Ausprägungsgrad der Permeabilitätsstörung keine Korrelation zur Oxygenierung, der Erkrankungsdauer oder dem PAP. Schlussfolgerung: Die Kapillarpermeabilität ist ein unabhängiger Parameter, dessen Messung die Differenzierung von Krankheitsstadien mit normaler und erhöhter Permeabilität ermöglicht.

 
  • References

  • 1 Basran GS, Byrne AJ, Hardy JG. A noninvasive technique for monitoring lung vascular permeability in man. Nucl Med Commun 1985; 3: 3-10.
  • 2 Benzing A, Bräutigam P, Geiger K, Loop T, Beyer U, Moser E. Inhaled nitric oxide reduces pulmonary transvascular albumin flux in patients with acute lung injury. Anesthesiology 1995; 83: 1153-61.
  • 3 Bernard GR, Artigas A, Brigham KL. et al. The American-European consensus conference on ARDS. Definitions, mechanisms, relevant outcomes and clinical trial coordination. Am J Respir Crit Care Med 1994; 14: 818-24.
  • 4 Bloomfield GL, Sweeney LB, Fisher BJ, Blocher CR, Sholley MM, Sugerman HJ, Fowler AA. Delayed administration of inhaled nitric oxide preserves alveolar-capillary membrane integrity in porcine gram-negative sepsis. Arch Surg 1997; 132: 65-75.
  • 5 Braude S, Nolop KB, Hughes JMB, Barnes PJ, Royston D. Comparison of lung vascular and epithelial permeability indices in the adult respiratory distress syndrome. Am Rev Respir Dis 1986; 133: 1002-5.
  • 6 Byrne K, Tatum JL, Henry DA, Hirsch JI, Crossland M, Barnes T, Thompson JA, Young J, Sugerman HJ. Increased morbidity with increased pulmonary albumin flux in sepsis-related adult respiratory distress syndrome. Crit Care Med 1992; 20: 28-34.
  • 7 Calandrino FS, Anderson DJ, Mintun MA, Schuster DP. Pulmonary vascular permeability during the adult respiratory distress syndrome: A positron emission tomographic study. Am J Respir Dis 1988; 138: 421-8.
  • 8 Chetham PM, Sefton WD, Bridges JP, Stevens T, McMurtry IF. Inhaled nitric oxide pre-treatment but not posttreatment attenuates ischemia-reperfusion-induced pulmonary microvascular leak. Anesthesiology 1997; 86: 895-902.
  • 9 Dauber M, Pluss WT, van Grondelle A, Trow RS, Weil JV. Specifity and sensitivity of noninvasive measurement of pulmonary vascular protein leak. J Appl Physiol 1985; 59: 564-74.
  • 10 Frikker MJ, Lynch K, Pontoppidan H. et al. The adult respiratory distress syndrome: aetiology, progression and survival. In: Artigas A, Lemaire F, Suter PM, Zapol WM. (eds). Adult Respiratory Distress Syndrome. Churchill Livingstone, Edinburgh: 1992. pp 3-6.
  • 11 Frostell C, Fratacci MD, Wain JC. et al. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 1991; 38: 2038-47.
  • 12 Fullerton DA, Eisenach JH, Mclntyre RC, Friese RS, Sheridan BC, Roe GB, Agrafojo J, Banerjee A, Harken AH. Inhaled nitric oxide prevents pulmonary endothelial dysfunction after mesenteric ischemia-reperfusion. Am J Physiol 1996; 271 Lung Cell Mol Physiol 15 L326-31.
  • 13 Gorin AB, Kohler J, De Nardo G. Noninvasive measurement of pulmonary transvascular protein flux in normal man. J Clin Invest 1980; 66: 269-877.
  • 14 Gorin AB, Weidner WJ, Demling RH, Staub NC. Noninvasive measurement of pulmonary transvascular protein flux in sheep. J Appl Physiol 1978; 45: 225-33.
  • 15 Groeneveld ABJ, Raijmakers PGHM, Teule GJJ, Thijs LG. The 67 Ga pulmonary leak index in assessing the severity and course of the adult respiratory distress syndrome. Crit Care Med 1996; 24: 1467-72.
  • 16 Groeneveld ABJ. Radionuclide assessment of pulmonary microvascular permeability. Eur J Nucl Med 1997; 24: 49-461.
  • 17 Guidot DM, Hybertson BM, Kitlowski RP, Repine JE. Inhaled nitric oxide prevents IL-1-induced neutrophil accumulation an associated edema in isolated rat lungs. Am J Physiol 1996; 271 Lung Cell Mol Physiol 15 L225-9.
  • 18 Guidot DM, Repine MJ, Hybertson BM, Repine JE. Inhaled nitric oxide prevents neutrophil-mediated, oxygen radical-dependent leak in isolated rat lungs. Am J Physiol 1995; 269: L2-5.
  • 19 Hoegerle S, Bräutigam P, Benzing A, Nitzsche E, Mols G, Geiger K, Moser E. Double isotope albuminflux measurement: diagnosis and monitoring of acute lung injury. Nuklearmedizin 1997; 36: 137-41.
  • 20 Humphrey H, Hall J, Sznaider I. et al. Improved survival in ARDS-patients associated with a reduction in pulmonary capillary wedge pressure. Chest 1990; 97: 1176-80.
  • 21 Hunter DN, Lawrence R, Morgan CJ, Evans TW. The use of caesium iodide mini scintill-tion counters for dual isotope pulmonary capillary permeability studies. Nucl Med Commun 1990; 11: 879-88.
  • 22 Long R, Breen PH, Mayers I, Wood LDH. Treatment of canine aspiration pneumonitis: fluid volume reduction vs. fuid volume expansion. J Appl Physiol 1988; 65: 1736-44.
  • 23 Loyd JE, Newman JH, Brigham KL. Permeability pulmonary edema. Arch Intern Med 1984; 144: 143-8.
  • 24 Luhr OR, Antonsen K, Karlsson M, Aardal S, Thorsteinsson A, Frostell CG, Bonde J. and the ARF study group.. Incidence and mortality after acute respiratory failure and acute respiratory distress syndrome in Sweden, Denmark, and Iceland. Am J Respir Crit Care Med 1999; 159: 1849-61.
  • 25 Molloy WD, Lee KY, Girling L, Prewitt RM. Treatment of canine permeability edema: short-term effects of dobutamine, furosemide and hydralazine. Circulation 1985; 72: 1365-71.
  • 26 Montaner JSG, Tsang J, Evans GK, Mullen JBM, Burns AR, Walker DQ, Wiggs B, Hogg JC. Alveolar epithelial damage. A critical difference between high pressure and oleic acid-induced low pressure pulmonary edema. J Clin Invest 1986; 77: 1786-96.
  • 27 Papazian L, Thomas P, Bregeon F, Garbe L, Zandotti C, Saux P, Gaillat F, Drancourt M, Auffray JP, Gouin F. Open-lung biopsy in patients with acute respiratory distress syndrome. Anesthesiology 1998; 88: 935-44.
  • 28 Poss WBJimmons OD, Farrukh IS, Hoidal JR, Michael JR. Inhaled nitric oxide prevents the increase in pulmonary vascular permeability caused by hydrogen peroxide. J Appl Physiol 1995; 79: 886-91.
  • 29 Prewitt RM, McCarthy J, Wood LDH. Treatment of acute low pressure pulmonary edema in dogs. J Clin Invest 1981; 67: 409-18.
  • 30 Putensen C, Waibel U, Koller W, Putensen-Himmer G, Hörmann C. Assessment of changes in lung microvascular permeability in posttraumatic acute lung failure after direct and indirect injuries to lungs. Anesth Analg 1992; 74: 793-9.
  • 31 Riddle WR, Roselli RJ, Parker RE, Pou NA. Evaluating flux of labeled albumin into pulmonary interstitium of sheep lungs. J Appl Physiol 1992; 72: 29-38.
  • 32 Riddle WR, Roselli RJ, Pou NA. Modeling flux of free and protein-bound radioisotopes into the pulmonary interstitium. J Appl Physiol 1990; 68: 2434-42.
  • 33 Rocker GM, Pearson D, Stephens M, Shale DJ. An assessment of a double isotope method for the detection of transferrin accumulation in the lungs of patients with widespread pulmonary infiltrates. Clin Science 1988; 75: 47-52.
  • 34 Roselli RJ, Riddle WR. Anlaysis of noninvasive macromolecular transport measurements in the lung. J Appl Physiol 1989; 67: 2343-50.
  • 35 Rossaint R, Lopez S, Falke KJ, Slama K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 1993; 328: 399-405.
  • 36 Schuster DP. What is Acute Lung Injury? What is ARDS?. Chest 1995; 107: 1721-6.
  • 37 Seeger W, Walmrath D, Grimminger F. Intensivtherapie des akuten Lungenversagens. Internist 1995; 36: 785-801.
  • 38 Sibbald WJ, Paterson NA, Holliday RL, Anderson RA, Lobb TR, Duff JH. Pulmonary hypertension in sepsis: measurement by the pulmonary arterial diastolic-pulmonary wedge pressure gradient and the influence of active and passive factors. Chest 1978; 73: 583-91.
  • 39 Sinclair DG, Braude S, Haslam PL, Evans TW. Pulmonary endothelial permeability in patients with severe lung injury. Clinical correlates and natural history. Chest 1994; 106: 535-9.
  • 40 Squara P, Dhainaut JF, Artigas A, Carlet J. Hemodynamic profile in severe ARDS: results of the European Collaborative study. Intensive Care Med 1998; 24: 1018-28.
  • 41 Staub NC. Pulmonary edema due to increased microvascular permeability to fluid and protein. Circ Res 1978; 43: 143-51.
  • 42 Sugerman HJ, Tatum JL, Burke TS, Strash AM, Glauser FL. Gamma scintigraphic analysis of albumin flux in patients with acute respiratory distress syndrome. Surgery St. Louis 1984; 95: 674-81.
  • 43 Sznajder JI, Zucker AR, Wood LDH, Long RG. The effects of plasmapheresis and hemo-filtration on canine acid aspiration pulmonary edema. Am Rev Respir Dis 1986; 134: 222-8.
  • 44 Tatum JL, Burke TS, Sugerman HJ, Strash AM, Hirsch JL, Fratkin MJ. Computerized scintigraphic technique for the evaluation of adult respiratory distress syndrome: initial clinical trials. Radiology 1982; 143: 237-41.
  • 45 Taylor AE, Barnard JW, Barman SA, Adkins WK. Fluid balance. In: Crystal RG, West JB. et al. (eds). The Lung: Scientific Foundations. Raven Press; New York: 1991. pp. 1147-61.
  • 46 Velazquez M, Weibel E, Kuhn K, Schuster DP. PET evaluation of pulmonary vascular permeability: a structure-function correlation. J Appl Physiol 1991; 70: 2206-16.
  • 47 Villar J, Blazquez MA, Lubillo S, Quintana J, Manzano JL. Pulmonary hypertension in acute respiratory failure. Crit Care Med 1989; 17: 523-6.
  • 48 Villar J, Slutsky AS. The incidence of the adult respiratory distress syndrome. Am Rev Respir Dis 1989; 140: 814-6.