RSS-Feed abonnieren
DOI: 10.1055/s-0038-1623992
Assessment of the incorporation of revascularized fibula grafts used for mandibular reconstruction with F-18-PET
Untersuchung der Inkorporation zur Unterkieferrekonstruktion verwendeter, revaskularisierter Fibulatransplantate mit F-18-PETPublikationsverlauf
Received:
12. April 2000
in revised form:
22. August 2000
Publikationsdatum:
10. Januar 2018 (online)
Summary
Aim: Determination of the range of regional blood flow and fluoride influx during normal incorporation of revascularized fibula grafts used for mandibular reconstruction. Evaluation, if healing complications are preceded by typical deviations of these parameters from the normal range. Assessment of the potential influence of using “scaled population-derived” instead of “individually measured” input functions in quantitative analysis. Methods: Dynamic F-l 8-PET images and arterialized venous blood samples were obtained in 11 patients early and late after surgery. Based on kinetic modeling regional blood flow (K1) and fluoride influx (Kmlf) were determined. Results: In uncomplicated cases, early postoperative graft K1 - but not Kmlf -exceeded that of vertebrae as reference region. Kmn values obtained in graft necrosis (n = 2) were below the ranges of values observed in uncomplicated healing (0.01 13-0.0745 ml/min/ml) as well as that of the reference region (0.0154-0.0748). Knf values in mobile non-union were in the lower range - and those in rigid non-union in the upper range of values obtained in stable union (0.021 1-0.0694). If scaled population-derived instead of measured input functions were used for quantification, mean deviations of 23 ± 17% in K1 and 12 ± 16% in Kmlf were observed. Conclusions: Normal healing of predominantly cortical bone transplants is characterized by relatively low osteoblastic activity together with increased perfusion. It may be anticipated that transplant necrosis can be identified by showing markedly reduced F− influx. In case that measured input functions are not available, quantification with scaled population-derived input functions is appropriate if expected differences in quantitative parameters exceed 70%.
Zusammenfassung
Ziel: Definition von Normalbereichen des regionaler Blutflusses und Fluoridinfluxes bei der unkomplizierten Einheilung zur Unterkieferrekonstruktion verwendeter revaskularisierte Fibulatransplantate. Untersuchung, ob bei gestörter Einheilung typische Abweichungen dieser Parameter vom Normalbereich auftreten. Einschätzung des möglichen Einflusses der Verwendung einer »Scaled population-derived input function« anstelle einer individuell gemessenen Inputfunktion auf die Resultate der quantitativen Analyse. Methoden: Bei 11 Patienten wurden frühzeitig und im späteren Verlauf postoperativ dynamische F-l 8-PET-Studien mit simultanen pseudoarteriellen Blutentnahmen durchgeführt. Auf der Grundlage kinetischer Modelle wurden Blutfluss (K1) und Fluoridinflux (Kmlf) regional bestimmt. Ergebnisse: Bei unkompliziert einheilenden Transplantaten lag K1 - aber nicht Kmlf - in der Frühphase im Mittel signifikant höher als in Wirbelkörpern. Der Fluoridinflux lag bei Transplantatnekrose (n = 2) niedriger als bei unkomplizierter Heilung (Streubereich: 0,01130,0745 ml/min/ml) und in der Referenzregion (0,0154-0,0748). Ferner lagen bei mobiler Pseudarthrose die Kmlf Werte im unteren Streubereich - und bei straffer Pseudarthrose im oberen Streubereich der bei stabiler Heilung der Grenzregion (0.0211-0.0694) gemessenen Werte. Bei der Quantifizierung mit einer »Scaled population-derived input function« im Gegensatz zur gemessenen Inputfunktion fanden sich mittlere Abweichungen von 23 ± 17% bei den berechneten Kf und 12 ± 16% bei den Kmlf Werten. Schlussfolgerung: Die unkomplizierte Einheilung überwiegend kortikaler Knochentransplantate ist gekennzeichnet durch eine relativ niedrige osteoblastische Aktivität und eine gesteigerte Perfusion. Es ist zu erwarten, dass sich Trcinspiantatnekrosen frühzeitig durch den Nachweis eines stark reduzierten F- influx identifizieren lassen. Falls eine gemessene Inputfunktion fehlt, scheint die Quantifizierung mit einer »Scaled population-derived input function« akzeptabel zu sein, sofern die erwarteten Unterschiede der quantitativen Parameter über 70% liegen.
-
References
- 1 Ackerhalt RE, Blau M, Bakshi S, Sondel JA. A comparative study of three Tc-99m-labeled phosphorus compounds and F-18-fluoride for skeletal imaging. J Nucl Med 1974; 15: 1153-7.
- 2 Arden RL, Burgio DL. Bone autografting of craniofacial skeleton: clinical and biological considerations. Am J Otolaryngol 1992; 13: 328-41.
- 3 Berding G, Burchert W, van den Hoff J, Pytlik C, Neukam FW, Meyer GJ, Gratz KF, Hundeshagen H. Evaluation of the incorporation of bone grafts used in maxillofacial surgery with F-18-fluoride ion and dynamic positron emission tomography. Eur J Nucl Med 1995; 22: 1133-40.
- 4 Berding G, Kirchhoff TD, Burchert W, van den Hoff J, Zeidler H, Hundeshagen H, Knapp WH. [,8F]fluoride PET indicates reduced bone formation in severe glucocorticoid-induced osteoporosis. Nuklearmedizin 1998; 37: 76-9.
- 5 Berding G, Schliephake H, Neumann G, Schmelzeisen R, Neukam FW, Meyer GJ, Gratz KF, Hundeshagen H. Bone SPECT of the jaws after fracture, onlay osteoplasty or insertion of implants. Nuklearmedizin 1996; 35: 156-63.
- 6 Berggren A, Weiland AJ, Östrup LT. Bone scintigraphy in evaluating the viability of composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and free non-revascularized periosteal grafts. J Bone Joint Surg 1982; 64A: 799-809.
- 7 Blau M, Gantra R, Bender MA. F-18-fluoride for bone imaging. Semin Nucl Med 1972; 2: 31-7.
- 8 Burchardt H. The biology of bone graft repair. Clin Orthop Rel Res 1983; 174: 28-42.
- 9 Carter JR, Furey CG, Shaffer JW. Histopathologic analysis of failed vascularized fibular grafts in femoral head osteonecrosis. Microsurgery 1998; 18: 110-8.
- 10 Charkes ND, Brookes M, Makler PT. Studies of skeletal tracer kinetics: II. Evaluation of a five-compartment model of [l8F] fluoride kinetics in rats. J Nucl Med 1979; 20: 1150-7.
- 11 Cook GJR, Lodge MA, Marsden PK, Dynes A, Fogelman I. Non-invasive assessment of skeletal kinetics using fluorine-18 fluoride positron emission tomography: evaluation of image and population-derived arterial input functions. Eur J Nucl Med 1999; 26: 1424-9.
- 12 Creutzig H. Vergleichende Untersuchungen mit osteotropen Radiopharmaka. III. Szintigraphie mit l8F und 99mTc-EHDP bei malignen und nichtmalignen Erkrankungen. Fortschr Röntgenstr 1975; 123: 462-7.
- 13 Cruess RL. Osteonecrosis of bone. Clin Orthop Rel Res 1986; 208: 30-9.
- 14 Francis MD, Fogelman I. 99mTc diphosphonate uptake mechanism on bone. In: Fogelman I. (ed.) Bone scanning in clinical paractice. London, Berlin, Heidelberg: Springer; 1987: 7-17.
- 15 Goldberg VM, Shaffer JW, Field G, Davy DT. Biology of vascularized bone grafts. Orthop Clin North Am 1987; 18: 197-205.
- 16 Greiff J. Bone fracture healing studied by Tc-99m-Sn-polyphosphate autoradiography and scintimetry. Dan Med Bull 1983; 30: 150-7.
- 17 Haller JR, Sullivan MJ. Contemporary techniques of mandibular reconstruction. Am J Otolaryngol 1995; 16: 19-23.
- 18 Hawkins RA, Choi Y, Huang SC, Höh CK, Dahlbom M, Schlepers C, Satyamurthy N, Barrio JR, Phelps ME. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med 1992; 33: 633-42.
- 19 Hoffman HT, Harrison N, Sullivan MJ, Robbins KT, Ridley M, Baker SR. Mandible reconstruction with vascularized bone grafts. A histologic evaluation. Arch Otoloaryngol Heac Neck Surg 1991; 117: 917-25.
- 20 Höh CK, Hawkins RA, Dahlbom M, Glaspy JA, Seeger LL, Choi Y, Schlepers C, Huang SC, Satyamurthy N, Barrio JR, Phelps ME. Whole body skeletal imaging with [18F]fluoride ion and PET. J Comput Assist Tomogr 1993; 17: 34-41.
- 21 Kalender WA, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M, Fraga J. Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography. Eur J Radiol 1989; 9: 75-80.
- 22 Krishnamurthy GT, Walsh CF, Shoop ES, Berger HGJH, Blahd WH. Comparison of 99mTc-polyphosphate and 18F. II. Imaging. JNucI Med 1974; 15: 837-43.
- 23 Kuriloff DB, Sullivan MJ. Mandibular reconstruction using vascularized bone grafts. Otolaryngol Clin North Am 1991; 24: 1391-418.
- 24 Lomasney LM, Madden JF, Rizk WS, Hedlund LW, Martinez S, Coleman RE, Richardson WJ, Sostman HD. Dynamic contrast-enhanced MR imaging assessment of vascularized free fibula grafts. JMRI 1994; 4: 441-9.
- 25 Malizos KN, Quartes LD, Seaber AV, Rizk WS, Urbaniak JR. An experimental canine model of osteonecrosis: characterization of the repair process. J Orthop Res 1993; 11: 350-7.
- 26 Messa C, Goodman WG, Höh CK, Choi Y, Nissenson AR, Salusky IB, Phelps ME, Hawkins RA. Bone metabolic activity measured with positron emission tomography and [18F] fluoride ion in renal osteodystrophy: correlation with bone histomorphometry. J Clin Endocr Metabol 1993; 77: 949-55.
- 27 Moran CG, Wood MB. Vascularized bone autografts. Orthop Rev 1993; 22: 187-97.
- 28 Nahmias C, Cockshott WP, Belbeck LW, Garnett ES. Measurement of absolute bone blood flow by positron emission tomography. Skeletal Radiol 1986; 15: 198-200.
- 29 Parker Vail T, Urbaniak JR. Donor-site morbidity with use of vascularized autogenous fibular grafts. J Bone Joint Surg 1996; 78-A: 204-11.
- 30 Petrén-Mallmin M, Andréasson I, Ljunggren Ö, Ahlström H, Bergh J, Antoni G, Längström B, Bergström M. Skeletal metastases from brest cancer: uptake of lxF-fluoride measured with positron emission tomography in correlation with CT. Skeletal Radiol 1998; 27: 72-6.
- 31 Piert M, Winter E, Becker GA, BiJger K, Machulla HJ, Müller-Schauenburg W, Bares R, Becker HD. Allogenic bone graft viability after hip revision arthroplasty assessed by dynamic [l8F]fluoride ion positron emission tomography. Eur J Nucl Med 1999; 26: 615-24.
- 32 Piert M, Zittel TT, Jahn M, Becker G, Maier G, Bares R, Machulla HJ, Becker HD. Evaluierung des Knochenmetabolismus mittels [‘·¼]H2O, [18F]Fluorid und Positronen Emissions Tomographie (PET) beim Schwein. Lan-genbecks Arch Chir 1997; 475-80.
- 33 Schlepers C, Broos P, Nuyts J, Morelmans L, Verbruggen A, De Roo M. Positron Emission Tomography using 18F fluoride for the evaluation of femoral head osteonecrosis. Eur J Nucl Med 1994; 21: 762.
- 34 Schlepers C, Nuyts J, Bormans G, Dequeker J, Bouillon R, Mortelmans L, Verbruggen A, De-Roo M. Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med 1997; 38: 1970-6.
- 35 Schirrmeister H, Kotzerke J, Rentschier M, Träger H, Fenchel S, Nüssle K, Diederrichs CG, Reske SN. Die Postitronenemissionstomogra-phie des Skelettsystems mit 18FNa: Häufigkeit, Befundmuster und Verteilung benigner Veränderungen. Fortschr Röntgenstr 1998; 169: 310-4.
- 36 Schliephake H, Berding G, Knapp WH, Sewilam S. Monitoring of graft perfusion and osteoblast activity in revascularized fibula segments using [18F]-positron emission tomography. Int J Oral Maxillofac Surg 1999; 28: 349-53.
- 37 Schuind FA, Schoutens A, Noorbergen M, Burny F. Is early bone scintigraphy a reliable method to assess the viability of vascularized bone transplants?. J Reconstr Microsurg 1993; 9: 399-403.
- 38 Shaffer JW, Field GA, Wilber RG, Goldberg VM. Experimental vascularized bone grafts: histopathologic correlations with postoperative bone scan: the risk of false-positive results. J Orthop Res 1987; 5: 311-9.
- 39 Shestak KC, Myers EN, Ramasastry SS, Jones NF, Johnson JT. Vascularized free-tissue transfer in head and neck surgery. Am J Otolaryngol 1993; 14: 148-54.
- 40 Teissier J, Bonnel F, Allieu Y. Vascularization, cellular behavior, and union of vascularized bone grafts: experimental study in the rabit. Ann Plast Surg 1985; 14: 494-504.
- 41 Urken ML, Sullivan MJ. Fibular osteocutaneous flap. In: Urken ML, Cheney ML, Sullivan MJ, Biller JF. (eds.) Atlas of regional and free flaps for head and neck reconstruction. New York: Raven Press; 1995: 291-306.
- 42 Van den Hoff J, Burchert W, Meyer GJ, Hundeshagen H. Verbesserte Visualisierung von 3D-Datensätzen in der Positronen-Emissions-Tomographie mittels modifizierter Maximum-Intensität-Projektion. Nuklearmedizin 1995; 34: A134.
- 43 Wootton R, Reeve J, Veall N. The clinical measurement of skeletal blood flow. Clin Sei Mol Med 1976; 50: 261-8.
- 44 Zinberg EM, Wood MB, Brown ML. Vascularized bone transfer: evaluation of viability by postoperative bone scan. J Reconstr Microsurg 1985; 2: 13-9.