Nervenheilkunde 2003; 22(05): 233-238
DOI: 10.1055/s-0038-1624402
Original- und Übersichtsarbeiten/Original and Review Articles
Schattauer GmbH

Funktionelle Neuroanatomie der selektiven visuellen Aufmerksamkeit

Functional neuroanatomy of selective visual attention
S. Pollmann
1   Universitätsklinikum Leipzig, Tagesklinik für Kognitive Neurologie (Dir.: Prof. Dr. med. D.Y. von Cramon), AG Experimentelle Neuropsychologie
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
22. Januar 2018 (online)

Zusammenfassung

Studien mit der funktionellen Magnetresonanztomographie (fMRT) haben ein funktionell neuroanatomisches Netzwerk charakterisiert, das die selektive visuelle Aufmerksamkeitszuwendung zu Orten, Objekten oder Reizmerkmalen unterstützt. Dieses Netzwerk besteht im Wesentlichen aus den humanen Homologen der Frontalen und Supplementären Augenfelder, aus Arealen entlang des Sulcus intraparietalis und aus dem temporoparietalen Übergangskortex. Neuere ereigniskorrelierte Studien erlauben eine funktionelle Differenzierung innerhalb dieses Netzwerks. Die Effekte selektiver Aufmerksamkeit auf die visuellen Areale des Okzipitallappens werden in fMRT-Studien als Modulation der Aktivierungsstärke sichtbar, mit erhöhter Aktivierung in den Arealen, die die jeweilige beachtete Reizqualität repräsentieren, sowie reduzierter Aktivierung in den Repräsentationsarealen der nicht beachteten Reizqualitäten.

Summary

Functional magnetic resonance studies have characterized a functional neuroanatomic network of selective visual attentional selection of locations, objects or features. This network consists largely of the human homologues of the frontal and supplementary eye fields, the cortices along the intraparietal sulcus and the temporo-parietal junction area. Recent event-related fMRI studies have led to a functional differentiation within this network. The effects of selective attention on the visual occipital areas are visible as modulation of activation strength, with increased activation in those areas which represent the attended stimulus quality, and reduced activation in areas which represent the non-attended qualities.

 
  • Literatur

  • 1 Beauchamp MS, Petit L, Ellmore TM, Ingeholm J, Haxby JV. A parametric study of overt and covert shifts of visuospatial attention. NeuroImage 2001; 14: 310-21.
  • 2 Brefczynski JA, DeYoe EA. A physiological correlate of the “spotlight” of visual attention. Nat Neurosci 1999; 02: 370-4.
  • 3 Büchel C, Josephs O, Rees G, Turner R, Frith CD, Friston KJ. The functional anatomy of attention to visual motion: A functional MRI study. Brain 1998; 121: 1281-94.
  • 4 Collie A, Maruff P, Yucel M, Danckert J, Currie J. Spatiotemporal distribution of facilitation and inhibition of return arising from the reflexive orienting of covert attention. J Exp Psychol Hum Percept Perform 2000; 26 (06) 1733-45.
  • 5 Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Lineweber MR, Pertersen SE, Raichle ME, van Essen DC, Shulman GL. A Common Network of Functional Areas for Attention and Eye Movements. Neuron 1998; 21: 761-73.
  • 6 Corbetta M, Kincade JM, Ollinger JM, Mc Avoy MP, Shulman GL. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neurosci 2000; 03 (03) 292-7.
  • 7 Corbetta M, Miezin FM, Shulman GL, Petersen SE. A PET study of visuospatial attention. J Neurosci 1993; 13: 1202-26.
  • 8 Corbetta M. Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems?. Proc Natl Acad Sci USA 1998; 95: 831-8.
  • 9 Deubel H, Schneider WX. Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research 1996; 36 (12) 1827-37.
  • 10 Downar J, Crawley AP, Mikulis DJ, Davis KD. A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 2000; 03 (03) 277-83.
  • 11 Duncan J. Selective attention and the organization of visual information. J Exp Psychol Gen 1984; 113: 501-17.
  • 12 Duvernoy HM. The human brain surface, three-dimensional sectional anatomy with MRI, and blood supply. Wien: Springer; 1999
  • 13 Friedrich FJ, Egly R, Rafal RD, Beck D. Spatial Attention Deficits in Humans: A Comparison of Superior Parietal and Temporal-Parietal Junction Lesion. Neuropsychol 1998; 12 (02) 193-207.
  • 14 Gitelman DI, Nobre AC, Parrish TB, LaBar KS, Kim Y-H, Meyer JR, Mesulam MM. A largescale distributed network for covert spatial attention. Brain 1999; 122: 1093-106.
  • 15 Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 1999; 24 (01) 187-203.
  • 16 Grobras M-H, Lobel E, van de Moortele P-F, LeBihan D, Berthoz A. An Anatomical Landmark for the Supplementary Eye Fields in Human Revealed with Functional Magnetic Resonance Imaging. Cerebral Cortex 1999; 09: 705-11.
  • 17 Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 2001; 293 (5539): 2425-30.
  • 18 Heilman KM, Bowers D, Valenstein E, Watson RT. Hemispace and hemispatial neglect. In: Neurophysiological and Neuropsychological Aspects of Spatial Neglect. Jeannerod M. (ed). Amsterdam: North Holland: 1987: 115-50.
  • 19 Heinze HJ, Mangun GR, Burchert W, Hinrichs H, Scholz M, Münte TF, Gos A, Scherg M, Johannes S, Hundeshagen H, Gazzaniga MS, Hillyard SA. Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 1994; 372: 543-6.
  • 20 Hopfinger JB, Buonocore MH, Mangun GR. The neural mechanisms of top-down attentional control. Nature Neurosci 2000; 03 (03) 284-91.
  • 21 Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 1997; 17 (11) 4302-11.
  • 22 Kastner S, De Weerd P, Desimone R, Ungerleider LG. Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 1998; 282 (5386): 108-11.
  • 23 Kastner S, De Weerd P, Pinsk MA, Elizondo MI, Desimone R, Ungerleider LG. Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. J Neurophysiol 2001; 86 (03) 1398-411.
  • 24 Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 1999; 22: 751-61.
  • 25 Kim Y, Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Mesulam MM. The Large-Scale Neural Network for Spatial Attention Displays Multifunctional Overlap But Differential Asymmetry. NeuroImage 1999; 09: 269-77.
  • 26 Lepsien J, Pollmann S. Covert reorienting and inhibition of return: An event-related fMRI study. J Cognit Neurosci 2002; 14 (02) 127-44.
  • 27 Luck S, Chelazzi L, Hillyard SA, Desimone R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol 1997; 77 (01) 24-42.
  • 28 Luna B, Thulborn KR, Strojwas MH, McCurtain BJ, Berman RA, Genovese CR, Sweeney JA. Dorsal Cortical Regions Subserving Visually Guided Saccades in Humans: An fMRI Study. Cerebral Cortex 1998; 08 (40) 40-7.
  • 29 Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 1995; 92 (18) 8135-9.
  • 30 Mangun GR, Buonocore MH, Girelli M, Iha AP. ERP and fMRI measures of visual spatial selective attention. Hum Brain Mapp 1998; 06: 383-9.
  • 31 Mangun GR, Hopfinger JB, Kussmaul CL, Fletcher EM, Heinze HJ. Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex. Hum Brain Mapp 1997; 05: 273-9.
  • 32 Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Wong EC, Hinrichs H, Heinze HJ, Hillyard SA. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neurosci 1999; 02: 364-9.
  • 33 Mesulam MM. A cortical network for directed attention and unilateral neglect. Annals of Neurology 1981; 01: 309-25.
  • 34 Moran J, Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science 1985; 229: 782-4.
  • 35 Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RS, Frith CD. Functional localization of the system for visuospatial attention using positron emission tomography. Brain 1997; 120: 515-33.
  • 36 Perry RJ, Zeki S. The neurology of saccades and covert shifts in spatial attention: An event-related fMRI study. Brain 2000; 123: 2273-88.
  • 37 Pollmann S, Cramon DY. Object working memory and visuospatial processing: Functional neuroanatomy analyzed by event-related fMRI. Exp Brain Res 2000; 133: 12-22.
  • 38 Pollmann S, Morrillo M. Left and right occipital cortices differ in their response to spatial cueing. Neuroimage 2003; 18: 273-83.
  • 39 Pollmann S, Weidner R, Humphreys GW, Olivers CNL, Müller K, Lohmann G, Wiggins CJ, Watson DG. Separating distractor rejection and target detection in posterior parietal cortex – an event-related fMRI-study of visual marking. Neuroimage 2003; 18: 310-23.
  • 40 Pollmann S, Weidner R, Müller HJ, von Cramon DY. A fronto-posterior network involved in visual dimension changes. J Cognit Neurosci 2000; 12 (03) 480-94.
  • 41 Pollmann S, Wiggins CJ, Norris DN, von Cramon DY, Schubert T. Use of short inter-trial intervals in single-trial experiments: A 3TfMRI-study. Neuroimage 1998; 08: 327-39.
  • 42 Posner MI, Dehaene S. Attentional networks. Trends Neurosci 1994; 17: 75-9.
  • 43 Rosen AC, Rao SM, Caffara P, Scaglioni A, Bobholz JA, Woodley SJ, Hammeke TA, Cunningham JM, Prieto TE, Binder JR. Neural basis of endogenous and exogenous spatial orienting: A functional MRI study. J Cognit Neurosci 1999; 11: 135-52.
  • 44 Rushworth MF, Krams M, Passingham RE. The attentional role of the left parietal cortex: the distinct lateralization and localization of motor attention in the human brain. J Cogn Neurosci 2001; 13 (05) 698-710.
  • 45 Rushworth MF, Paus T, Sipila PK. Attention systems and the organization of the human parietal cortex. J Neurosci 2001; 21 (14) 5262-71.
  • 46 Somers DC, Dale AM, Seiffert AE, Tootell RBH. Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proc Natl Acad Sci USA 1999; 96: 1663-8.
  • 47 Talairach J, Tournoux P. Co-planar stereotactic atlas of the human brain. Stuttgart: Thieme; 1988
  • 48 Tootell RB, Hadjikhani N, Hall EK, Marrett S, Vanduffel W, Vaughan JT, Dale AM. The retinotopy of visual spatial attention. Neuron 1998; 21: 1409-22.
  • 49 van der Heijden AH. The role of position in object selection in vision. Psychol Res 1993; 56 (01) 44-58.
  • 50 Vandenberghe R, Duncan J, Arnell KM, Bishop SJ, Herrod NJ, Owen AM, Minhas PS, Dupont P, Pickard JD, Orban GA. Maintaining and shifting attention within left or right hemifield. Cereb Cortex 2000; 10 (07) 706-13.
  • 51 Watson DG, Humphreys GW. Visual marking: Prioritizing selection for new objects by topdown attentional inhibition of old objects. Psychol Rev 1997; 104: 90-122.
  • 52 Watson DG, Humphreys GW. Visual marking: Evidence for inhibition using a probe-dot detection paradigm. Percept Psychophys 2000; 62: 471-81.
  • 53 Weidner R, Pollmann S, Müller HJ, von Cramon DY. Top-down controlled visual dimension weighting: An event-related fMRI study. Cerebral Cortex 2002; 12 (03) 318-28.
  • 54 Wojciulik E, Kanwisher N. The generality of parietal involvement in visual attention. Neuron 1998; 23: 747-64.