Subscribe to RSS
DOI: 10.1055/s-0038-1625119
Internal radionuclide therapy
Software for treatment planning using tomographic dataTherapie mit offenen RadionuklidenSoftware zur Therapieplanung mit tomographischen DatenPublication History
Received:
26 April 2006
in revised form:
18 July 2006
Publication Date:
11 January 2018 (online)
Summary
Aim: Accurate dosimetry must be performed for each patient before therapy with unsealed radionuclides. Recently, the software tool ULMDOS was developed to facilitate planar dosimetric calculations and to support traceability and documentation as a prerequisite for good clinical practice. Here, the extended version of ULMDOS for processing of tomographic data is presented. Methods: ULMDOS is developed in IDL 6.1 (Interactive Data Language) under Windows XP/2000. Serial tomographic data can be loaded in an ECAT7 or DICOM format, and presented as maximum intensity projection. The definition of volumes of interest is supported by various tools (e.g., freehand, isocontour, polygon), region growing, and cluster analysis. Residence times are calculated from fits of the time activity data to exponential functions. Results, discussion: Quantitative 3-dimensional data allow performing a more individualized dosimetry, as problems due to organ overlay, insufficient attenuation and scatter correction in the planar approach can be avoided. For traceability, documentation, retrospective examination and later processing all data can be saved in binary or ASCII format. Dosimetric calculations can be conducted within a single environment, thus it spares the time-consuming transfer of data between different software tools.
Zusammenfassung
Ziel: Vor einer Therapie mit offenen Radionukliden muss die Aktivität individuell für jeden Patienten ermittelt werden. Die etablierte Methode, die planare Dosimetrie, wird mit dem vor kurzem vorgestellten Programm ULMDOS hinsichtlich Dokumentation und Reproduzierbarkeit der Arbeitsprozesse unterstützt. Die hier beschriebene Programmerweiterung ermöglicht zusätzlich die Bearbeitung tomographischer Bilddaten, womit die Einschränkungen der planaren Methode bezüglich der Quantifizierbarkeit umgangen werden können. Methoden: ULMDOS wurde mit IDL 6.1 (Interactive Data Language) auf einer Windows XP/2000-Plattform implementiert. Serielle tomographische Aufnahmen können im ECAT7- oder DICOM-Format geladen werden und als Maximum-Intensitätsprojektion dargestellt werden. Für die Definition der interessierenden Volumina stehen verschiedene Funktionen (z.B. Freihand-, Isokontur- oder Polygon-Werkzeug) sowie semi-automatische Algorithmen (z.B. Region Growing) und eine Clusteranalyse zur Verfügung. Für die Berechnung der Verweildauern können gekoppelte Exponentialfunktionen an die Zeit- Aktivitätsverläufe in den einzelnen Organen angepasst werden. Die statistische Auswertung der ausgewählten Volumina wird tabellarisch und als Histogramm ausgegeben. Ergebnisse, Diskussion: Tomographische Bilder liefern aufgrund der 3D-Organdefinition einen patienten-spezifischeren Ansatz, da Probleme des planaren Verfahrens wie Organüberlagerungen, ungenaue Streu- und Schwächungskorrektur umgangen werden. Zusätzlich können inhomogene Organ-Akkumulationen erfasst werden. Alle Ergebnisse können im Binär- oder ASCII-Format gespeichert werden. Die Dokumentationsmöglichkeiten innerhalb einer einheitlichen Arbeitsumgebung erlauben eine gute Nachvollziehbarkeit und eine effizientere Bearbeitung.
-
References
- 1 Andreeff M, Wunderlich G, Behge K. et al. beta- Radiation exposure with 188Re-labelled pharmaceuticals. Nuklearmedizin 2005; 44: 94-8.
- 2 Bacher K, Thierens H. Accurate dosimetry: an essential step towards good clinical practice in nuclear medicine. Nucl Med Comm 2005; 26: 581-6.
- 3 Beyer T. Towards truly integrated hardware fusion with PET/CT. Nuklearmedizin 2005; 44 (Suppl. 01) S5-S12.
- 4 Bolch WE, Bouchet LG, Robertson JS. et al. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions--radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med 1999; 40: 11S-36S.
- 5 Buchmann I, Meyer RG, Herr W. et al. Radioimmunotherapy for treatment of acute myeloid leukaemia and myelodysplastic syndrome: Conceptual changes. Nuklearmedizin 2005; 44: 107-17.
- 6 Bunjes D, Buchmann I, Duncker C. et al. Rhenium 188-labeled anti-CD66 (a, b, c, e) monoclonal antibody to intensify the conditioning regimen prior to stem cell transplantation for patients with high-risk acute myeloid leukemia or myelodysplastic syndrome: results of a phase I-II study. Blood 2001; 98: 565-72.
- 7 De Jong M, Valkema R, van Gameren A. et al. Inhomogeneous localization of radioactivity in the human kidney after injection of [111In-DTPA]Octreotide. J Nucl Med 2004; 45: 1168-71.
- 8 Dietlein M, Dressler J, Farahati J. et al. Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 2). Nuklearmedizin 2004; 43: 115-20.
- 9 Fischer M, Behr T, Grünwald F. et al. Guideline for radioimmunotherapy of rituximab relapsed or refractory CD20+ follicular b-cell non-hodgkin´s lymphoma. Nuklearmedizin 2004; 5: 171-6.
- 10 Flux G, Bardies M, Monsieurs M. et al. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys 2006; 16: 47-59.
- 11 Gardin I, Bouchet LG, Assie K. et al. Voxeldose: a computer program for 3-D dose calculation in therapeutic nuclear medicine. Cancer Biother Radiopharm 2003; 18: 109-15.
- 12 Glatting G, Landmann M, Kull T. et al. Internal radionuclide therapy: The ULMDOS software for treatment planning. Med Phys 2005; 32: 2399-405.
- 13 Glatting G, Kull T, Blumstein NM. et al. Dosimetry with 188Re-labelled monoclonal anti-CD66 antibodies: A simplified approach based on a single measurement 3 h p.i. Nuklearmedizin 2006; 45: 134-8.
- 14 Glatting G, Müller M, Koop B. et al. Anti-CD45 monoclonal antibody (YAML568) – a promising radioimmunoconjugate for targeted therapy of acute leukemia. J Nucl Med 2006; 47: 1335-41.
- 15 Guy MJ, Flux GD, Papavasileiou P. et al. RMDP: A dedicated package for 131I SPECT quantification, registration and patient-specific dosimetry. Cancer Biother Radiopharm 2003; 18: 61-9.
- 16 Helisch A, Förster GJ, Reber H. et al. Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111Inpentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2004; 31: 1386-92.
- 17 Kotzerke J, Glatting G, Seitz U. et al. Radioimmunotherapy for the intensification of conditioning before stem cell transplantation: differences in dosimetry and biokinetics of 188Re- and 99mTc-labeled anti-NCA-95 MAbs. J Nucl Med 2000; 41: 531-7.
- 18 McKay E. A software tool for specifying voxel models for dosimetry estimation. Cancer Biother Radiopharm 2003; 18: 379-92.
- 19 Neumaier B, Mottaghy FM, Deisenhofer S. et al. Biological evaluation of [N-methyl- 11C]2-(4´-(methylaminophenyl)-benzothiazole for amyloid plaque imaging in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2005; 32: S22.
- 20 Neumann M. DICOM – current status and future developements for radiotherapy. Z Med Phys 2002; 12: 171-6.
- 21 Reske SN, Bunjes D, Buchmann I. et al. Targeted bone marrow irradiation in the conditioning of high risk leukemia prior to stem cell transplantation. Eur J Nucl Med 2001; 28: 807-15.
- 22 RSI (Research Systems Inc.).. IDL Reference Guide. Interactive Data Language 5.3. Colorado 80301, USA: Boulder; 1999
- 23 Schomäcker K, Dietlein M, Schnell R. et al. Radioimmunotherapy with yttrium-90 ibritumomab tiuxetan. Clinical considerations, radiopharmacy, radiation protection, perspectives. Nuklearmedizin 2005; 44: 166-77.
- 24 Sgouros G, Squeri S, Ballangrud AM. et al. Patient- specific, 3-dimensional dosimetry in nonhodgkin’s lymphoma patients treated with 131I-anti-B1 antibody: assessment of tumor doseresponse. J Nucl Med 2003; 44: 260-8.
- 25 Sgouros G, Kolbert KS, Sheikh A. et al. Patientspecific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004; 45: 1366-72.
- 26 Sharkey RM, Brenner A, Burton J. et al. Radioimmunotherapy of non-Hodgkin’s lymphoma with 90Y-DOTA humanized anti-CD22 IgG (90Y-epratuzumab): do tumor targeting and dosimetry predict therapeutic response?. J Nucl Med 2003; 44: 2000-18.
- 27 Shen S, Meredith R-F, Duan J. et al. Improved prediction of myelotoxicity using a patient-specific imaging dose estimate for non-marrow-targeting 90Y-antibody therapy. J Nucl Med 2002; 43: 1245-53.
- 28 Siegel JA, Thomas SR, Stubbs JB. et al. MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 1999; 40: 37S-61S.
- 29 Stabin MG, Sparks RB, Crowe E. OLINDA/ EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005; 46: 1023-7.
- 30 Strand SE, Jonsson BA, Ljungberg M. et al. Radioimmunotherapy dosimetry--a review. Acta Oncol 1993; 32: 807-17.
- 31 Thierens H, Monsieurs M, Bacher K. Patient dosimetry in radionuclide therapy: the whys and the wherefores. Nucl Med Comm 2005; 26: 593-9.
- 32 Zenz T, Glatting G, Schlenk RF. et al. Targeted marrow irradiation with radioactively labeled anti-CD66 monoclonal antibody prior to allogeneic stem cell transplantation for patients with leukemia: results of a phase I-II study. Haematologica 2006; 91: 285-6.
- 33 Zenz T, Schlenk RF, Glatting G. et al. Bone marrow transplantation nephropathy after an intensified conditioning regimen with radioimmunotherapy and allogeneic stem cell transplantation. J Nucl Med 2006; 47: 278-86.