Nuklearmedizin 2003; 42(05): 197-209
DOI: 10.1055/s-0038-1625190
Original Article
Schattauer GmbH

Neurocognition and PET

Strategies for data analysis in activation studies on working memoryNeurokognition und PETDatenanalytische Strategien bei Aktivierungsstudien zum Arbeitsgedächtnis
H. Hautzel
1   Klinik für Nuklearmedizin (KME), Forschungszentrum Jülich, Nuklearmedizinische Klinik, Heinrich-Heine-Universität Düsseldorf, Deutschland
,
F. M. Mottaghy
1   Klinik für Nuklearmedizin (KME), Forschungszentrum Jülich, Nuklearmedizinische Klinik, Heinrich-Heine-Universität Düsseldorf, Deutschland
,
D. Schmidt
1   Klinik für Nuklearmedizin (KME), Forschungszentrum Jülich, Nuklearmedizinische Klinik, Heinrich-Heine-Universität Düsseldorf, Deutschland
,
H.-W. Müller
1   Klinik für Nuklearmedizin (KME), Forschungszentrum Jülich, Nuklearmedizinische Klinik, Heinrich-Heine-Universität Düsseldorf, Deutschland
,
B. J. Krause
1   Klinik für Nuklearmedizin (KME), Forschungszentrum Jülich, Nuklearmedizinische Klinik, Heinrich-Heine-Universität Düsseldorf, Deutschland
› Author Affiliations
Further Information

Publication History

Received: 20 January 2003

in revised form: 02 May 2003

Publication Date:
10 January 2018 (online)

Summary:

Aim: In cognitive neuroscience regional cerebral blood flow (rCBF) imaging with positron-emission-tomography (PET) is a powerful tool to characterize different aspects of cognitive processes by using different data analysis approaches. By use of an n-back verbal working memory task (varied from 0- to 3-back) we present cognitive subtraction analysis as basic strategy as well as parametric and covariance analyses and discuss the results. Methods: Correlation analyses were performed using the individual performance rate as an external covariate, computing inter-regional correlations, and as network analysis applying structural equation modelling to evaluate the effective connectivity between the involved brain regions. Results: Subtraction analyses revealed a fronto-parietal neuronal network also including the anterior cingulate cortex and the cerebellum. With higher memory load the parametric analysis evidenced linear rCBF increases in prefrontal, pre-motor and inferior parietal areas including the precuneus as well as in the anterior cingulate cortex. The rCBF correlation with the individual performance as external covariate depicted negative correlations in bilateral prefrontal and inferior parietal regions, in the precuneus and the anterior cingulate cortex. The network analysis demonstrated mainly occipito-frontally directed interactions which were predominantly left-hemispheric. Additionally, strong linkages were found between extrastriate and parietal regions as well as within the parietal cortex. Conclusion: The data analysis approaches presented here contribute to an extended and more elaborated understanding of cognitive processes and their different sub-aspects.

Zusammenfassung:

Ziel, Methoden: Im Bereich der neurokognitiven Aktivierungsstudien mit Messung des regionalen zerebralen Blutflusses (rCBF) mit PET können durch Anwendung verschiedener Datenanalysestrategien unterschiedliche Aspekte eines kognitiven Prozesses charakterisiert werden. Unter Verwendung eines verbalen n-zurück-Arbeitsgedächtnis-Paradigmas (n von 0 bis 3) werden kognitive Subtraktionsanalysen als Basisauswertung, parametrische und Kovarianz-basierte Analysen vorgestellt. Letztere wurden unter Anwendung einer externen Kovariate (individuelle Rate der korrekten Antworten), mittels regionaler Interkorrelationen und als Netzwerkanalyse mit Hilfe struktureller Gleichungssysteme zur Modellierung der effektiven Konnektivität zwischen den beteiligten Hirnregionen durchgeführt. Ergebnisse: Die Subtraktionsanalysen stellten eine zunehmende Involvierung eines fronto-parietalen Netzwerkes unter Einschluss des anterioren cingulären Kortex und Kleinhirnanteilen dar. Die parametrische Analyse wies einen linear mit der Aufgabenschwierigkeit ansteigenden rCBF beidseits präfrontal, inferior parietal unter Einschluss des Präcuneus, im prä-supplementär-motorischen Kortex links und im anterior cingulären Kortex nach. Die Korrelationsanalyse mit Nutzung einer externen Kovariaten demonstrierte von dieser negativ abhängige rCBF-Veränderungen beidseits inferior parietal und im Präcuneus, bilateral präfrontal und im anterior cingulären Kortex. In der Netzwerkanalyse zur Beschreibung der effektiven Konnektivität wurden vorwiegend von okzipital nach frontal gerichtete, links-hemisphärisch dominante Interaktionen nachgewiesen. Schlussfolgerung: Die vorgestellten datenanalytischen Vorgehensweisen tragen in ihrer Gesamtheit zum umfassenden Verständnis kognitiver Prozesse und einzelner Teilaspekte bei.

 
  • Literatur

  • 1 Baddeley A. The episodic buffer: a new component of working memory?. Trends Cogn Sci 2000; 4: 417-23.
  • 2 Baddeley AD. Working Memory. Oxford: University Press; 1986
  • 3 Baker SC, Frith CD, Frackowiak RS. et al. Active representation of shape and spatial location in man. Cereb Cortex 1996; 6: 612-9.
  • 4 Barch DM, Braver TS, Nystrom LE. et al. Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia 1997; 35: 1373-80.
  • 5 Belger A, Puce A, Krystal JH. et al. Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Hum Brain Mapp 1998; 6: 14-32.
  • 6 Braver TS, Cohen JD, Nystrom LE. et al. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 1997; 5: 49-62.
  • 7 Brix G, Zaers J, Adam LE. et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med 1997; 38: 1614-23.
  • 8 Carlson S, Martinkauppi S, Rama P. et al. Distribution of cortical activation during visuospatial n-back tasks as revealed by functional magnetic resonance imaging. Cereb Cortex 1998; 8: 743-52.
  • 9 Carter CS, Braver TS, Barch DM. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 1998; 280: 747-9.
  • 10 Collette F, Van der LM. Brain imaging of the central executive component of working memory. Neurosci Biobehav Rev 2002; 26: 105-25.
  • 11 D’Esposito M, Aguirre GK, Zarahn E. et al. Functional MRI studies of spatial and nonspatial working memory. Brain Res Cogn Brain Res 1998; 7: 1-13.
  • 12 D’Esposito M, Detre JA, Alsop DC. et al. The neural basis of the central executive system of working memory. Nature 1995; 378: 279-81.
  • 13 D’Esposito M, Postle BR, Ballard D. et al. Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain Cogn 1999; 41: 66-86.
  • 14 Garavan H, Ross TJ, Stein EA. Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc Natl Acad Sci USA 1999; 96: 8301-6.
  • 15 Hautzel H, Mottaghy FM, Schmidt D. et al. Topographic segregation and convergence of verbal, object, shape and spatial working memory in humans. Neurosci Lett 2002; 323: 156-60.
  • 16 Hautzel H, Taylor JG, Krause BJ. et al. The motion aftereffect: more than area V5/MT? Evidence from 15O-butanol PET studies. Brain Res 2001; 892: 281-92.
  • 17 Herzog H, Seitz RJ, Tellmann L. et al. Pharmacokinetics and radiation dose of oxygen-15 labelled butanol in rCBF studies in humans. Eur J Nucl Med 1994; 21: 138-43.
  • 18 Honey GD, Fu CH, Kim J. et al. Effects of verbal working memory load on corticocortical connectivity modeled by path analysis of functional magnetic resonance imaging data. Neuroimage 2002; 17: 573-82.
  • 19 Horwitz B, McIntosh AR, Haxby JV. et al. Network analysis of brain cognitive function using metabolic and blood flow data. Behav Brain Res 1995; 66: 187-93.
  • 20 Humberstone M, Sawle GV, Clare S. et al. Functional magnetic resonance imaging of single motor events reveals human presupplementary motor area. Ann Neurol 1997; 42: 632-7.
  • 21 Jonides J, Smith EE, Koeppe RA. et al. Spatial working memory in humans as revealed by PET. Nature 1993; 363: 623-5.
  • 22 Jöreskog KG, Sörbom D. LISREL 7 User´s Reference Guide. Mooresville, IN.: Scientific Software, Inc.,; 1999
  • 23 Kiehl KA, Liddle PF, Hopfinger JB. Error processing and the rostral anterior cingulate: an event-related fMRI study. Psychophysiology 2000; 37: 216-23.
  • 24 Krause BJ, Horwitz B, Taylor JG. et al. Network analysis in episodic encoding and retrieval of word-pair associates: a PET study. Eur J Neurosci 1999; 11: 3293-301.
  • 25 Krause BJ, Schmidt D, Mottaghy FM. et al. O-15-butanol PET activation study on the cerebral representation of declarative memory. Nuklearmedizin 1998; 37: 257-61.
  • 26 Krause JB, Taylor JG, Schmidt D. et al. Imaging and neural modelling in episodic and working memory processes. Neural Netw 2000; 13: 847-59.
  • 27 McIntosh AR, Gonzalez-Lima F. Structural modeling of functional visual pathways mapped with 2-deoxyglucose: effects of patterned light and footshock. Brain Res 1992; 578: 75-86.
  • 28 McIntosh AR, Grady CL, Haxby JV. et al. Changes in limbic and prefrontal functional interactions in a working memory task for faces. Cereb Cortex 1996; 6: 571-84.
  • 29 McIntosh AR, Grady CL, Ungerleider LG. et al. Network analysis of cortical visual pathways mapped with PET. J Neurosci 1994; 14: 655-66.
  • 30 Menon V, Adleman NE, White CD. et al. Error-related brain activation during a Go/NoGo response inhibition task. Hum Brain Mapp 2001; 12: 131-43.
  • 31 Miyake A, Shah P. Models of Working Memory: Mechanisms of Active Maintenance and Executive Control. Cambridge, MA: Cambridge University Press; 1999
  • 32 Mottaghy FM, Krause BJ, Schmidt D. et al. Comparison of PET and fMRI activation patterns during declarative memory processes. Nuklearmedizin 2000; 39: 196-203.
  • 33 Mottaghy FM, Pascual-Leone A, Kemna LJ. et al. Modulation of a brain-behavior relationship in verbal working memory. Brain Res Cogn Brain Res 2003; 15: 241-9.
  • 34 Nagahama Y, Okada T, Katsumi Y. et al. Transient neural activity in the medial superior frontal gyrus and precuneus time locked with attention shift between object features. Neuroimage 1999; 10: 193-9.
  • 35 Nystrom LE, Braver TS, Sabb FW. et al. Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. Neuroimage 2000; 11: 424-46.
  • 36 Owen AM, Stern CE, Look RB. et al. Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proc Natl Acad Sci USA 1998; 95: 7721-6.
  • 37 Paulesu E, Frith CD, Frackowiak RS. The neural correlates of the verbal component of working memory. Nature 1993; 362: 342-5.
  • 38 Petrides M, Alivisatos B, Evans AC. et al. Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc Natl Acad Sci USA 1993; 90: 873-7.
  • 39 Petrides M, Alivisatos B, Meyer E. et al. Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci USA 1993; 90: 878-82.
  • 40 Posner MI, Petersen SE, Fox PT. et al. Localization of cognitive operations in the human brain. Science 1988; 240: 1627-31.
  • 41 Postle BR, Berger JS, D’Esposito M. Functional neuroanatomical double dissociation of mnemonic and executive control processes contributing to working memory performance. Proc Natl Acad Sci USA 1999; 96: 12959-64.
  • 42 Postle BR, D’Esposito M. “What”-Then-“Where” in visual working memory: an event-related fMRI study. J Cogn Neurosci 1999; 11: 585-97.
  • 43 Rypma B, D’Esposito M. The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proc Natl Acad Sci USA 1999; 96: 6558-63.
  • 44 Rypma B, Prabhakaran V, Desmond JE. et al. Load-dependent roles of frontal brain regions in the maintenance of working memory. Neuro-image 1999; 9: 216-26.
  • 45 Salmon E, Van der Linden M, Collette F. et al. Regional brain activity during working memory tasks. Brain 1996; 119: 1617-25.
  • 46 Smith EE, Jonides J. Working memory: a view from neuroimaging. Cognit Psychol 1997; 33: 5-42.
  • 47 Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science 1999; 283: 1657-61.
  • 48 Smith EE, Jonides J, Koeppe RA. Dissociating verbal and spatial working memory using PET. Cereb Cortex 1996; 6: 11-20.
  • 49 Stephan KE, Hilgetag CC, Burns GA. et al. Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci 2000; 355: 111-26.
  • 50 Swick D, Turken AU. Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex. Proc Natl Acad Sci USA 2002; 99: 16354-9.
  • 51 Ungerleider LG, Courtney SM, Haxby JV. A neural system for human visual working memory. Proc Natl Acad Sci USA 1998; 95: 883-90.