Nuklearmedizin 2004; 43(05): 143-149
DOI: 10.1055/s-0038-1625195
Original Articles
Schattauer GmbH

Limitations of dual time point FDG-PET imaging in the evaluation of focal abdominal lesions

Grenzen der 2-Phasen-FDGPET zur Evaluation fokaler abdomineller Läsionen
N. Döbert
1   Department of Nuclear Medicine
,
N. Hamscho
1   Department of Nuclear Medicine
,
C. Menzel
1   Department of Nuclear Medicine
,
L. Neuss
1   Department of Nuclear Medicine
,
A. F. Kovács
2   Maxillofacial and Facial Plastic Surgery, University of Frankfurt am Main, Germany
,
F. Grünwald
1   Department of Nuclear Medicine
› Author Affiliations
Further Information

Publication History

Received: 07 May 2004

in revised form: 29 June 2004

Publication Date:
10 January 2018 (online)

Summary:

Aim: For the evaluation of the diagnostic potential of dual time point FDG positron emission tomography (PET) in patients with suspicious focal abdominal up-take, dual time point PET imaging was compared with clinical findings. Patients, methods: In a prospective study, 56 patients exhibiting a solitary suspicious, intense abdominal FDG uptake, underwent dual time point PET imaging for staging or restaging of different malignant tumors, maximal standardized uptake value (SUVmax) measurements included. The first acquisition was started 64.8 ± 19.5, the second 211.3 ± 52.5 min after FDG injection. The final diagnosis based on CT or MRT imaging and a follow-up period of 12.6 ± 2.8 months. Additionally, colonoscopy was done in 6 patients. In another 6 patients histopathology was obtained from CT guided biopsy. Results: Malignant focal abdominal lesions with a SUVmax <2.5 (n = 4) showed an uptake increase of ≥30%. In the remaining malignant cases with an uptake of ≥2.5 (n = 11), up-take increased in 64% and decreased in 36%. Malignant lesions showing FDG uptake decrease (n = 4) had an initial SUVmax value ≥2.5 and remained with a SUVmax ≥2.5 in the second imaging. In benign lesions with an initial SUVmax ≥2.5 (n = 31), the uptake increased in 17 patients (55%) and decreased in 14 patients (45%). All lesions which changed configuration (33%) were confirmed as benign (n = 5). Conclusion: Using dual time point PET abdominal lesions show a very hetergenous uptake pattern regardless of their dignity. Malignancy can only be reliably excluded in lesions which change their configuration and in lesions with an initial SUVmax value <2.5 combined with an SUV decrease in the delayed imaging. Particularly abdominal lesions which show an initial SUVmax ≥2.5 combined with a SUV increase in the delayed imaging are suspicious for malignancy and need further clarification.

Zusammenfassung:

Ziel: Zur Bestimmung des diagnostischen Wertes der 2-Phasen-FDG-PET (PET) bei Patienten mit suspektem, fokalen abdominellen Uptake wurde die PET mit den klinischen Untersuchungsergebnissen verglichen. Patienten, Methoden: Bei 56 Patienten, die im Rahmen des Stagings oder Restagings einer malignen Grunderkrankung einen solitären fokal suspekten abdominellen Focus aufwiesen, wurde in einer prospektiven Studie ein 2-Phasen-PET mit quantitativer Analyse des maximalen standardisierten Uptake-Wertes (SUVmax) durchgeführt. Die erste Akquisition erfolgte 64,8 ± 19,5, die zweite 211,3 ± 52,5 min nach der FDG-Applikation. Die endgültige Diagnose basierte auf CT- oder MRT-Aufnahmen und dem Follow-up von 12,6 ± 2,8 Monaten. Eine zusätzliche Koloskopie erfolgte bei 6 Patienten und histologische Ergebnisse aus CT-gesteuerter Biopsie lagen bei weiteren 6 Patienten vor. Ergebnisse: Alle malignen fokalen abdominellen Läsionen (n = 4), die einen SUVmax <2,5 aufwiesen, zeigten in der Zweitaufnahme einen SUV-Anstieg von ≥30%. In den übrigen malignen Fällen, die einem SUVmax-Wert ≥2,5 aufwiesen (n= 11), wurde bei 64% ein SUV-Anstieg und bei 36% ein SUV-Abfall beobachtet. Die malignen Läsionen, die einen SUV-Abfall aufwiesen (n = 4), hatten initial und auch in der zweiten Aufnahme einen SUVmax-Wert ≥2,5. In benignen Läsionen mit einem initialen SUVmax ≥2,5 (n = 31) wurde bei 17 Patienten (55%) ein Uptake-Anstieg und bei 14 Patienten (45%) ein Uptake-Abfall beobachtet. Alle Läsionen, die ihre Konfiguration änderten (33%), waren benigne (n = 5). Schlussfolgerungen: In der 2-Phasen-PET weisen abdominelle Foci unabhängig von ihrer Dignität ein sehr heterogenes Uptake-Muster auf. Ein zuverlässiger Malignitätsausschluss gelingt lediglich in abdominellen Läsionen, die ihre Konfiguration ändern und in Läsionen, die einen initialen SUVmax-Wert <2,5 in Kombination mit einem SUV-Abfall in der zweiten Aufnahme aufweisen. Insbesondere abdominelle Foci, die einen initialen SUVmax-Wert ≥2,5 in Kombination mit einem SUV-Anstieg in der zweiten Aufnahme zeigen, sind malignomsuspekt und sollten weiter abgeklärt werden.

 
  • References

  • 1 Avril N, Menzel M, Dose J. et al. Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med 2001; 42: 9-16.
  • 2 Boerner AR, Weckesser M, Herzog H. et al. Optimal scan time for fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer. Eur J Nucl Med 1999; 26: 226-30.
  • 3 Bohdiewicz PJ, Juni JE, Ball D. et al. Krukenberg tumor and lung metastases from colon carcinoma diagnosed with F-18 FDG PET. Clin Nucl Med 1995; 20: 419-20.
  • 4 Brink I, Klenzner T, Krause T. et al. Lymph node staging in extracranial head and neck cancer with FDG PET-appropriate uptake period and size-dependence of the results. Nuklearmedizin 2002; 41: 108-13.
  • 5 Conrad GR, Sinha P. Narrow time-window dual-point 18F-FDG PET for the diagnosis of thoracic malignancy. Nucl Med Commun 2003; 24: 1129-37.
  • 6 Cook GJ, Fogelman I, Maisey MN. Normal physiological and benign pathological variants of 18-fluoro-2-deoxyglucose positron-emission tomography scanning: potential for error in interpretation. Semin Nucl Med 1996; 26: 308-14.
  • 7 Cremerius U, Fabry U, Neuerburg J. et al. Prognostic significance of positron emission tomography using fluorine-18-fluorodeoxyglucose in patients treated for malignant lymphoma. Nuklearmedizin 2001; 40: 23-30.
  • 8 Czerin J. Clinical applications of FDG-PET in oncology. Acta Med Austr 2002; 29: 162-70.
  • 9 DiChiro G, Dela Par RL, Brooks RA. et al. Glucose utilization of cerebral gliomas measured by 18F-fluoro-deoxyglucose and positron emission tomography. Neurology 1982; 32: 1323-9.
  • 10 Dietlein M, Weber W, Schwaiger M. et al. 18FFluorodeoxyglucose positron emission tomography in restaging of colorectal cancer. Nuklearmedizin 2003; 42: 145-56.
  • 11 Döbert N, Menzel C, Hamscho N. et al. Atypical thoracic and supraclavicular FDG-uptake in patients with Hodgkin’s and non-Hodgkin’s lymphoma. Q J Nucl Med 2004; 48: 33-8.
  • 12 Elstrom R, Guan L, Baker G. et al. Utility of FDG-PET scanning in lymphoma by WHO classification. Blood 2003; 101: 3875-6.
  • 13 Goldberg MA, Lee MJ, Fischman AJ. et al. Fluorodeoxyglucose PET of abdominal and pelvic neoplasms: potential role in oncologic imaging. Radiographics 1993; 13: 1047-62.
  • 14 Herzog H, Hichwa RD. Image reconstruction, quantification and standard uptake value. In: Wieler HJ, Coleman RE. (eds). PET in clinical oncology. Darmstadt: Steinkopff; 2000: 29-30.
  • 15 Hustinx R, Smith RJ, Benard F. et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 1999; 26: 1345-8.
  • 16 Kim S, Chung JK, Kim BT. et al. Relationship between gastrointestinal 18F-fluorodeoxyglucose accumulation and gastrointestinal symptoms in whole-body PET. Clin Positron Imaging 1999; 2: 273-80.
  • 17 Kubota K, Itoh M, Ozaki K. et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med 2001; 28: 696-703.
  • 18 Kubota R, Kubota K, Yamada S. et al. Microautoradiographic study for the differentiation of intratumoural macrophages, granulation tissues and cancer cells by the dynamics of fluorine-18-fluorodeoxyglucose uptake. J Nucl Med 1994; 35: 104-12.
  • 19 Lodge MA, Lucas JD, Marsden PK. et al. A PET study of 18F-FDG uptake in soft tissue masses. Eur J Nucl Med 1999; 26: 22-30.
  • 20 Löffler M, Weckesser M, Franzius Ch. et al. Malignant melanoma and 18F-FDG-PET: Should the whole body scan include the legs?. Nuklearmedizin 2003; 42: 167-72.
  • 21 Lowe VJ, Hoffman JM, DeLong DM. et al. Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities. J Nucl Med 1994; 35: 1771-6.
  • 22 Matthies A, Hickeson M, Cuchiara A. et al. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002; 43: 871-5.
  • 23 Menzel Ch, Döbert N, Rieker O. et al. 18F-Deoxyglucose PET for the staging of oesophageal cancer: influence of histopathological. Nuklearmedizin 2003; 42: 90-3.
  • 24 Meyer MA. Diffusely increased colonic F-18 FDG uptake in acute enterocolitis. Clin Nucl Med 1995; 20: 434-5.
  • 25 Miraldi F, Vesselle H, Faulhaber PF. et al. Elimination of artifactual accumulation of FDG in PET imaging of colorectal cancer. Clin Nucl Med 1998; 23: 3-7.
  • 26 Moadel RM, Blaufox MD, Freeman LM. The role of positron emission tomography in gastrointestinal imaging. Gastroenterol Clin North Am 2002; 31: 841-61.
  • 27 Nowak B, Di Martino E, Janicke S. et al. Diagnostic evaluation of malignant head and neck cancer by F-18-FDG PET compared to CT/MRI. Nuklearmedizin 1999; 38: 312-8.
  • 28 O’Doherty MJ, Macdonald EA, Barrington SF. et al. Positron emission tomography in the management of lymphomas. Clin Oncol (R Coll Radiol) 2002; 14: 415-26.
  • 29 Reinhardt MJ, Kensy J, Frohmann JP. et al. Value of tumour marker S-100B in melanoma patients: a comparison to 18F-FDG PET and clinical data. Nuklearmedizin 2002; 41: 143-7.
  • 30 Shon IH, O’Doherty MJ, Maisey MN. Positron emission tomography in lung cancer. Semin Nucl Med 2002; 32: 240-71.
  • 31 Sugawara Y, Zasadny KR, Neuhoff AW. et al. Reevaluation of the standarized uptake value for FDG: variations with body weight and methods for correction. Radiology 1999; 213: 521-5.
  • 32 Tatlidil R, Jadvar H, Bading JR. et al. Incidental colonic fluorodeoxyglucose uptake: correlation with colonoscopic and histopathologic findings. Radiology 2002; 224: 783-7.
  • 33 Wahl RL, Hutchins GD, Buchsbaum DJ. et al. 18F-2-deoxy-2-fluoro-D-glucose uptake into human tumour xenografts. Feasibility studies for cancer imaging with positron-emission tomography. Cancer 1991; 67: 1544-50.
  • 34 Weber WA, Dietlein M, Hellwig D. et al. PET with 18F-fluorodeoxyglucose for staging of non-small cell lung cancer. Nuklearmedizin 2003; 42: 135-44.
  • 35 Yasuda S, Fujii H, Nakahara T. et al. 18F-FDG PET detection of colonic adenomas. J Nucl Med 2001; 42: 989-92.
  • 36 Yonekura Y, Benua RS, Brill AB. et al. Increased accumulation of 2-deoxy-2-18F-fluoroD-glucose in liver metastases from colon carcinoma. J Nucl Med 1982; 23: 1133-7.
  • 37 Zhuang H, Sinha P, Pourdehnad M. et al. The role of positron emission tomography with fluorine-18-deoxyglucose in identifying colorectal cancer metastases to liver. Nucl Med Commun 2000; 21: 793-8.